监督学习是一种机器学习方法,它使用已知的输入-输出对(也称为标记数据)来训练模型。目标是让模型能够从这些示例中学习到模式,并在遇到新的、未见过的数据时做出准确的预测。简而言之,监督学习就是教会机器如何基于过去的正确答案来预测未来的未知情况。
常见算法包括:
-
线性回归 - 用于预测连续值的结果,比如房价预测。在这个例子中,我们可能有历史房屋销售记录,其中包含每个房子的特征(如卧室数量、浴室数量、面积等)以及对应的售价。线性回归会找到一个数学公式,该公式能根据房子的特征尽可能准确地估计其价格。
-
逻辑回归 - 与线性回归类似,但主要用于分类问题,尤其是二分类问题。例如,我们可以用逻辑回归来预测用户是否会点击广告。给定用户的浏览行为和人口统计信息作为输入,逻辑回归模型可以输出一个概率,表示用户点击广告的可能性。
-
决策树 - 这是一种基于一系列规则进行决策的方法,这些规则以树状结构的形式组织起来。比如,一个简单的决策树可以用来决定是否批准贷款申请。树的每一个节点代表一个属性测试,而叶节点则对应最终的决策结果(批准或拒绝)。
-
随机森林 - 随机森林是由多个决策树组成的集成学习方法。每一棵树都独立训练,并且在预测时,所有树的预测结果会被综合起来得到最终的预测。例如,在股票市场分析中,随机森林可以通过分析历史数据中的各种技术指标来预测未来的价格走势。
-
支持向量机 (SVM) - 支持向量机试图找到一个超平面,这个超平面能够将不同类别的数据点尽可能清晰地区分开来。SVM在图像识别领域有着广泛应用,比如手写数字识别,通过训练集中的样本学习识别不同数字的手写风格。
-
K-近邻算法 (KNN) - KNN 是一种简单直观的分类算法,它的基本思想是“物以类聚”。对于一个新的观测值,KNN 算法会在训练集中找出距离最近的 k 个邻居,然后根据这 k 个邻居的多数类别来决定新观测值的类别。例如,在推荐系统中,可以根据用户的历史购买记录来推荐相似的商品。
-
梯度提升机 (GBM) - GBM 是一种迭代式的机器学习算法,它通过逐步添加新的模型来纠正前一个模型的错误。GBM 在许多比赛中表现出色,比如 Kaggle 比赛,因为它能够处理大量的特征并捕捉到复杂的关系。
-
神经网络/深度学习模型 - 虽然严格来说属于更广泛的机器学习范畴,但神经网络特别是深层神经网络通常被单独归类为深度学习。这类模型擅长于处理非常复杂的非线性关系,如图像和声音识别。