常用
技术名称 | 类型 | 描述及应用 |
---|---|---|
Huffman Coding | 无损 | 常用于文本压缩,基于字符出现的频率为每个字符赋予变长编码。 |
Run-Length Encoding (RLE) | 无损 | 用于图像和声音压缩,通过编码连续出现的值的长度和值本身来压缩数据。例如,AAAAABBBCCDAA 变为 5A3B2C1D2A。 |
JPEG | 有损 | 常用于图像压缩。它通过在颜色和亮度上进行量化来降低图像质量。 |
GIF | 无损 | 用于图像压缩。适用于带有大量重复颜色的图像,如图形和简单图像。 |
PNG | 无损 | 用于图像压缩。适合于需要高质量图像或具有透明性的图像。 |
MP3 | 有损 | 常用于音频压缩。它通过删除人耳听不到的声音来减小文件大小。 |
FLAC | 无损 | 用于音频压缩。保留原始音频的所有信息。 |
MPEG | 有损 | 常用于视频压缩。 |
ZIP | 无损 | 通常用于文件和目录的压缩。 |
LZW | 无损 | 用于GIF图像和某些文件压缩工具,如Unix的“compress”命令。 |
GIF看起来那么不清晰为啥是无损压缩?
GIF (Graphics Interchange Format) 使用的 LZW (Lempel-Ziv-Welch) 压缩算法确实是无损的,但GIF 格式本身对图像颜色有限制。
GIF 是一个基于位图的格式,它限制颜色为 256 种。这意味着当您将一个拥有数千或数百万种颜色的图像转换为 GIF 格式时,图像中的颜色将被减少到最接近的 256 种颜色。这个过程是有损的。
然而,一旦图像被转换为 256 色并保存为 GIF,其 LZW 压缩过程是无损的。这意味着当您解压缩这个 GIF,您会得到完全相同的 256 色位图,而没有进一步的质量损失。
可以这样说:GIF 格式的颜色量化过程是有损的,但它的 LZW 压缩过程是无损的。
不常用:
技术名称 | 类型 | 描述及应用 |
---|---|---|
Brotli | 无损 | 由Google开发,用于Web内容的压缩。 |
Wavelet Coding | 可有损/无损 | 在图像压缩(如 JPEG 2000)中使用,比传统的DCT技术提供更好的压缩和质量。 |
Arithmetic Coding | 无损 | 基于符号出现的概率,为每个符号分配一个概率范围。在某些应用中与Huffman编码相比提供了更好的压缩。 |
ADPCM | 有损 | 用于音频压缩,特别是低比特率的音频。 |
DPCM | 有损 | 预测性编码,用于图像和音频压缩。 |
LZ77 and LZ78 | 无损 | 是Lempel-Ziv家族的两种基本压缩算法,许多其他算法(如DEFLATE)都基于它们。 |
JBIG & JBIG2 | 无损 | 用于二进制图像的压缩,如传真图像。JBIG2是其后续版本,也支持有损压缩。 |
ALAC | 无损 | Apple Lossless Audio Codec,Apple的无损音频压缩格式。 |
TTA | 无损 | True Audio,是一个用于音频的无损压缩算法。 |