HDU 2452 Navy maneuvers (记忆化搜索)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2452

题意:给出一个图,n个点,m条边,保证无环,每个点有一个权值。指定一个点作为起点,Victory和Glory轮流选择下一个走到的点,将走过的点的权值相加,走到不能再向前为止。如果它们都选最用策略,问Victory能不能使权值和大于等于f,如果可以则Victory赢,否则Glory赢。

思路:

记忆化搜索,以u为起点时,Victory希望权值和dp[u]最大,Glory希望dp[u]最小。

用二维数组,dp[0][u]表示以u为起点能取得的最小值,dp[1][u]为能取得的最大和。

因为Victory和Glory轮流选择路线,所以有如下转移方程:

dp[0][u] = min{dp[1][v] + a[u], dp[0][u]}

dp[1][u] = max{dp[0][v] + a[u], dp[1][u]}

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#define INF 0x7fffffff
#define MOD 1000000007
#include <vector>
using namespace std;
typedef long long ll;
const int MAXN = 10005;
int n, m, f, s;
int in[MAXN], a[MAXN], dp[5][MAXN];
vector<int> G[MAXN];

void dfs(int u)
{
    if(dp[0][u] >= 0) return;
    if(!G[u].size())
    {
        dp[0][u] = dp[1][u] = a[u];
        return;
    }
    dp[0][u] = INF; dp[1][u] = 0;
    for(int i = 0; i < G[u].size(); i++)
    {
        int v = G[u][i];
        dfs(v);
        dp[0][u] = min(a[u] + dp[1][v], dp[0][u]);
        dp[1][u] = max(a[u] + dp[0][v], dp[1][u]);
    }
}

int main()
{
    #ifdef LOCAL
    freopen("data.in", "r", stdin);
    #endif

    int u, v;
    while(~scanf("%d%d%d", &n, &m, &f))
    {

        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
            G[i].clear();
        }
        memset(in, 0, sizeof(in));
        for(int i = 0; i < m; i++)
        {
            scanf("%d%d", &u, &v);
            G[u].push_back(v);
            in[v]++;
        }
        for(int i = 1; i <= n; i++)
            if(!in[i])
            {
                s = i; break;
            }
        memset(dp, -1, sizeof(dp));
        dfs(s);
        if(dp[1][s] >= f)
            printf("Victory\n");
        else
            printf("Glory\n");
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值