133. 克隆图;232. 用栈实现队列;225. 用队列实现栈

给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。

图中的每个节点都包含它的值 val(int) 和其邻居的列表(list[Node])。

class Node {
    public int val;
    public List<Node> neighbors;
}

 

测试用例格式:

简单起见,每个节点的值都和它的索引相同。例如,第一个节点值为 1(val = 1),第二个节点值为 2(val = 2),以此类推。该图在测试用例中使用邻接列表表示。

邻接列表 是用于表示有限图的无序列表的集合。每个列表都描述了图中节点的邻居集。

给定节点将始终是图中的第一个节点(值为 1)。你必须将 给定节点的拷贝 作为对克隆图的引用返回。

 

示例 1:

输入:adjList = [[2,4],[1,3],[2,4],[1,3]]
输出:[[2,4],[1,3],[2,4],[1,3]]
解释:
图中有 4 个节点。
节点 1 的值是 1,它有两个邻居:节点 2 和 4 。
节点 2 的值是 2,它有两个邻居:节点 1 和 3 。
节点 3 的值是 3,它有两个邻居:节点 2 和 4 。
节点 4 的值是 4,它有两个邻居:节点 1 和 3 。


示例 2:

输入:adjList = [[]]
输出:[[]]
解释:输入包含一个空列表。该图仅仅只有一个值为 1 的节点,它没有任何邻居。


示例 3:

输入:adjList = []
输出:[]
解释:这个图是空的,它不含任何节点。


示例 4:

输入:adjList = [[2],[1]]
输出:[[2],[1]]

 

提示:


    节点数不超过 100 。
    每个节点值 Node.val 都是唯一的,1 <= Node.val <= 100。
    无向图是一个简单图,这意味着图中没有重复的边,也没有自环。
    由于图是无向的,如果节点 p 是节点 q 的邻居,那么节点 q 也必须是节点 p 的邻居。
    图是连通图,你可以从给定节点访问到所有节点。

class Solution {
public:
    Node* cloneGraph(Node* node) {//广度遍历
        if(!node)return nullptr;
        queue<Node*>q;
        q.push(node);
        unordered_map<Node*,Node*>m;//即表示映射又表示是否已遍历过
        Node *newNode=new Node(node->val);
        m[node]=newNode;
        while(q.size()){
            int qSize=q.size();
            while(qSize--){
                Node *qFront=q.front();
                q.pop();
                for(auto &n:qFront->neighbors){
                    if(m.count(n)==0){//
                        Node *temp=new Node(n->val);
                        m[n]=temp;
                        q.push(n);
                    }
                    m[qFront]->neighbors.push_back(m[n]);//
                }
            }
        }
        return newNode;
    }
};
class Solution {
public:
    Node* cloneGraph(Node* node) {//深度优先
        if(!node)return nullptr;
        stack<Node*>s;
        s.push(node);
        unordered_map<Node*,Node*>m;//即表示映射又表示是否已遍历过
        Node *newNode=new Node(node->val);
        m[node]=newNode;
        while(s.size()){
            Node *sTop=s.top();
            s.pop();
            for(auto &n:sTop->neighbors){
                if(m.count(n)==0){
                    Node *temp=new Node(n->val);
                    m[n]=temp;
                    s.push(n);
                }
                m[sTop]->neighbors.push_back(m[n]);
            }
        }
        return newNode;
    }
};

232. 用栈实现队列

class MyQueue {
    stack<int>sIn,sOut;
public:
    /** Initialize your data structure here. */
    MyQueue() {
        ;
    }
    
    /** Push element x to the back of queue. */
    void push(int x) {
        sIn.push(x);
    }
    
    /** Removes the element from in front of queue and returns that element. */
    int pop() {
        if(sOut.empty())
            for(int i=0,j=sIn.size();i<j;++i){
                sOut.push(sIn.top());
                sIn.pop();
            }
        int res=sOut.top();
        sOut.pop();
        return res;
    }
    
    /** Get the front element. */
    int peek() {
        if(sOut.empty())
            for(int i=0,j=sIn.size();i<j;++i){
                sOut.push(sIn.top());
                sIn.pop();
            }
        return sOut.top();
    }
    
    /** Returns whether the queue is empty. */
    bool empty() {
        return sIn.empty()&&sOut.empty();
    }
};

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue* obj = new MyQueue();
 * obj->push(x);
 * int param_2 = obj->pop();
 * int param_3 = obj->peek();
 * bool param_4 = obj->empty();
 */

225. 用队列实现栈

class MyStack {
    queue<int>q;
public:
    /** Initialize your data structure here. */
    MyStack() {
        ;
    }
    
    /** Push element x onto stack. */
    void push(int x) {
        q.push(x);
    }
    
    /** Removes the element on top of the stack and returns that element. */
    int pop() {
        for(int i=1,qSize=q.size();i<qSize;++i){
            q.push(q.front());
            q.pop();
        }
        int res=q.front();
        q.pop();
        return res;
    }
    
    /** Get the top element. */
    int top() {
        return q.back();
    }
    
    /** Returns whether the stack is empty. */
    bool empty() {
        return q.size()==0;
    }
};

/**
 * Your MyStack object will be instantiated and called as such:
 * MyStack* obj = new MyStack();
 * obj->push(x);
 * int param_2 = obj->pop();
 * int param_3 = obj->top();
 * bool param_4 = obj->empty();
 */

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值