深度学习实践
文章平均质量分 74
打酱油QAQ
这个作者很懒,什么都没留下…
展开
-
Visualizing convnet filters keras示例代码详解
Visualizing convnet filters 1. 任务内容及目标 观察卷积网络学习到了什么。 2. 主要思路 随机输入噪声,优化指定滤波器的激活值,通过梯度增加的方式,修改输入图片,观察滤波器对什么图案响应比较高。 2.1 输入 随机初始化一张有点噪声的图,将图片输入网络 input_img_data = np.random.random((1, img_width, img_heig...原创 2019-12-17 13:43:00 · 263 阅读 · 0 评论 -
难分负样本挖掘 OHEM HNM focal loss
在看Faster R-CNN与SSD的时候 难分负样本挖掘 训练时需要保持样本均衡,往往经过IOU筛选之后负样本集数量远远大于正样本集,会导致损失不易收敛, 所以初始负样本训练集需要选择负样本集的子集,随机选? 按照分类损失对样本进行排序,选择负样本中难以分类的样本加入训练(也就是损失值高的样本)。一般正:负=1:3,有了正负训练集就可以训练神经网络了。 Focal Loss 解决问题: 1.类别...原创 2019-07-15 17:27:24 · 2032 阅读 · 0 评论 -
VGG原论文训练过程
训练: 数据增强: 随机裁剪(crop)、水平翻转(horizontal flips)、RGB颜色变化(color shift) 采用2种设置训练图像大小方法: (1)固定训练集图片大小,如256256和384384; (2)让训练集的大小在一个范围内随机变化,如S∈[Smin,Smax]=[256,512],从多尺度的训练图像中进行采样, 训练采用小批量梯度下降法加上动量(mini-batch...原创 2019-07-15 19:30:01 · 1252 阅读 · 0 评论