论文解读 | Explaining and Harnessing Adversarial Examples
核心观点:神经网络对于对抗样本的攻击如此脆弱的原因,是因为网络的线性本质。文章还提出了最早的 FGSM (Fast Gradient Sigh Method)对抗样本生成方法。通过在训练样本中加入一定的对抗样本(随机生成),可以对模型起到一定的正则化作用。insight利用非线性可以抵抗对抗样本,但是非线性的模型又没有线性模型好训练优化,所以未来的思路可能是:设计一套优化方法,可以用来很...
原创
2019-03-30 16:07:25 ·
1169 阅读 ·
0 评论