🌟个人博客:www.hellocode.top🌟
⭐所有文章均在上方博客首发,其他平台同步更新
🔥本文专栏:《每日一题》
⚡如有问题,欢迎指正,一起学习~~
文章部分参考《代码随想录》,如有侵权,请联系删除~~
- 时间:2022-05-26
- 题目序号:150
- 难度:中等
问题描述
根据 逆波兰表示法,求表达式的值。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
注意 两个整数之间的除法只保留整数部分。
可以保证给定的逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况
来源:力扣(LeetCode)
示例1
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例2
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例3
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示
- 1 <= tokens.length <= 104
- tokens[i] 是一个算符(“+”、“-”、“*” 或 “/”),或是在范围 [-200, 200] 内的一个整数
逆波兰表达式
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面
-
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 )
-
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * )
逆波兰表达式主要有以下两个优点:
- 去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果
- 适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中
解题思路
题解部分参考自代码随想录。如有侵权,请联系进行删除~~
- 本题主要就是计算后缀表达式的结果,我们平时使用的是中缀表达式,这种对于我们比较熟悉
- 中缀表达式,就是将运算符写在运算数后,对计算机来说更加友好
、
- 对于本题,可以用栈来解决
- 遍历表达式字符串,当是操作数时,入栈
- 当遍历的字符是运算符时,将栈内两个操作数出栈,先出栈的作为右运算数,后出栈的作为左运算数
- 对于计算出的数,继续入栈,进行后续运算
- 当遍历完表达式后,栈内只剩一个元素,也就是表达式的结果,弹出即可
代码实现
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for(int i = 0; i < tokens.length; i++){
if("+".equals(tokens[i])){
stack.push(stack.pop() + stack.pop());
}else if("-".equals(tokens[i])){
stack.push(-stack.pop() + stack.pop());
}else if("*".equals(tokens[i])){
stack.push(stack.pop() * stack.pop());
}else if("/".equals(tokens[i])){
int num1 = stack.pop();
int num2 = stack.pop();
stack.push(num2 / num1);
}else { // 当前字符为操作数
stack.push(Integer.parseInt(tokens[i]));
}
}
return stack.pop();
}
}
总结
-
我们平常看到的表达式都是中缀表达式,因为符合我们的习惯,但是中缀表达式对于计算机来说就不是很友好了。
-
例如:4 + 13 / 5,这就是中缀表达式,计算机从左到右去扫描的话,扫到13,还要判断13后面是什么运算法,还要比较一下优先级,然后13还和后面的5做运算,做完运算之后,还要向前回退到 4 的位置,继续做加法
-
将上面的中缀表达式,转化为后缀表达式就是:[“4”, “13”, “5”, “/”, “+”] ,这时计算机就可以利用栈内顺序处理,不需要考虑优先级