大数据spark初识

Spark是一个快速、通用的集群计算系统,提供批处理、迭代算法、交互式查询和流处理等多种计算模式。相较于Hadoop,Spark通过内存计算大幅提升处理速度,其核心组件包括Spark Core、Spark SQL、Spark Streaming、MLlib和GraphX。Spark采用Master-Slave架构,通过DAG Scheduler和TaskScheduler进行任务调度,RDD是其基础计算单元,具备弹性和容错性。
摘要由CSDN通过智能技术生成

1.什么是spark?

         Spark 是一个用来实现快速而通用的集群计算的平台。
        在速度方面,Spark 扩展了广泛使用的 MapReduce 计算模型,而且高效地支持更多计算模式,包括交互式查询和流处理。在处理大规模数据集时,速度是非常重要的。速度快就意味着我们可以进行交互式的数据操作,否则我们每次操作就需要等待数分钟甚至数小时。Spark 的一个主要特点就是能够在内存中进行计算,因而更快。不过即使是必须在磁盘上进行的复杂计算,Spark 依然比 MapReduce 更加高效。
        总的来说,Spark 适用于各种各样原先需要多种不同的分布式平台的场景,包括批处理、迭代算法、交互式查询、流处理。通过在一个统一的框架下支持这些不同的计算,Spark使我们可以简单而低耗地把各种处理流程整合在一起。而这样的组合,在实际的数据分析过程中是很有意义的。不仅如此,Spark 的这种特性还大大减轻了原先需要对各种平台分别管理的负担。
        Spark 所提供的接口非常丰富。除了提供基于 Python、Java、Scala 和 SQL 的简单易用的API 以及内建的丰富的程序库以外,Spark 还能和其他大数据工具密切配合使用。例如,Spark 可以运行在 Hadoop 集群上,访问包括 Cassandra 在内的任意 Hadoop 数据源。

2.spark 设计理念和基础架构

     首先在说明spark 设计理念的之前我们先看看hadoop的架构,如下图:

                 

   

那么hadoop 1.x 版本的缺点:

    从Hdfs角度出发:    

  • 单点故障问题:因为NameNode含有我们用户存储文件的全部的元数据信息,当我们的NameNode无法在内存中加载全部元数据信息的时候,集群的寿命就到头了。
  • 拓展性问题:NameNode在内存中存储了整个分布式文件系统中的元数据信息,并且
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值