机器学习 machine learning
文章平均质量分 91
赵鹏举
现在互金行业从事数据开发工程师,主要工作语言为python。
1. 目前学习方向:python语言、数据库、数据仓库和大数据工作构建、机器学习算法
2. CSDN2018年小目标:争取每周写一篇技术博客
展开
-
<机器学习笔记-04 ><scikit-learn 04>逻辑回归
摘要:本文主要介绍了分类任务的分类,逻辑回归的概念,以及分类评估方法;同时介绍了如何使用python对分类任务进行建模、预测结果以及结果评价,以及使用GridSearch方法进行优化;原创 2016-09-12 20:14:19 · 2086 阅读 · 0 评论 -
<机器学习笔记-05 ><scikit-learn 05>决策树 & 随机森林
本文主要介绍了笔者对于决策树原理的理解。原创 2016-09-17 21:08:22 · 4026 阅读 · 0 评论 -
<机器学习笔记-06 ><scikit-learn 06>K-Means 聚类
本文主要介绍聚类、K-means的概念和结果评估,以及使用python进行聚类分析的方法;原创 2016-09-18 15:33:02 · 10187 阅读 · 0 评论 -
<机器学习笔记-07 ><scikit-learn 07>PCA主成分分析
关键词:主成分分析,PCA,scikit-learn,python,降维摘要:本文主要介绍降维、PCA等概念,以及PCA实现、降维数据可视化、文件目录内所有图片读取、降维后利用逻辑回归进行分类等方法;原创 2016-09-18 21:42:34 · 4482 阅读 · 0 评论 -
<机器学习笔记-01><scikit-learn 01>机器学习基础
目的 笔者计划对“机器学习machine learning”进行学习,为了对知识和技能进行及时地梳理和总结,同时也为了能够与同道者交流学习,决心以笔记分享的方式来记录这一过程,也算是对自己的一种鞭策吧。架构&思路 & 参考资料: a. 从工程师立场来看,问题的解决往往可以分为两个过程:造积木和搭积木;具体到机器学习的领域,创造新的算法,并对其进行封装,这是造积木的部分,而将不同的算法应用到各原创 2016-09-05 10:57:58 · 960 阅读 · 0 评论 -
<机器学习笔记-02> <scikit-learn -02>线性回归
摘要:本文是“Mastering Machine Learning With scikit-learn”第二章“线性回归”的学习笔记,对书中源码进行实现,并对书中内容按照知识模块进行整理,尤其是对python函数整理力求做到清晰有条理;原创 2016-09-06 22:23:34 · 2325 阅读 · 0 评论 -
<机器学习笔记-03><scikit-learn 03>特征提取
摘要:本文为“mastering machine learning with scikit-learn”第三章“特征提取”的读书笔记;主要介绍了从分类变量、文字、图像等研究对象中提取变量特征的方法,重点介绍了独热编码(one-Hot Encoding)、词库模型(Bag-Of-words model)、特征向量降维方法、角点/SIFT/SURF等特征提取方法,以及其Python实现;原创 2016-09-08 01:43:40 · 7494 阅读 · 0 评论