linux下ffmpeg安装时ERROR: libx264 not found 错误解决

本文解决了一个常见的FFmpeg配置问题,当尝试启用libx264支持时,配置脚本报告未找到libx264。通过调整环境变量PKG_CONFIG_PATH并指向正确的pkgconfig目录,成功解决了这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、下图是产生错误的,命令:

[root@CentOS7 ffmpeg]# ./configure --prefix=/usr/ffmpeg --enable-shared --enable-yasm --enable-libx264 --enable-gpl --extra-cflags=-l/usr/x264/include --extra-ldflags=-L/usr/x264/lib

报出的错误:

ERROR: libx264 not found

If you think configure made a mistake, make sure you are using the latest
version from Git.  If the latest version fails, report the problem to the
ffmpeg-user@ffmpeg.org mailing list or IRC #ffmpeg on irc.freenode.net.
Include the log file "ffbuild/config.log" produced by configure as this will help
solve the problem.

根据提示去查看错误的日志,日志存放的地址如上已经指出ffbuild/config.log。
二、查看具体的错误信息:
在这里插入图片描述如图:

check_pkg_config libx264 x264 stdint.h x264.h x264_encoder_encode
test_pkg_config libx264 x264 stdint.h x264.h x264_encoder_encode
pkg-config --exists --print-errors x264
Package x264 was not found in the pkg-config search path.
Perhaps you should add the directory containing `x264.pc'
to the PKG_CONFIG_PATH environment variable
No package 'x264' found

以上告诉你没有找到pkg-config这个文件夹,所以也就不存在x264.pc这个命令。
接下来我们看一下为什么找不到这个文件夹,明明参数–extra-ldflags=-L/usr/x264/lib都指定了,到x264下看看;
在这里插入图片描述
发现安装x264的pkgconfig不叫pkg-config,由于不知道什么原因也不敢乱改怕有不可知的影响,仔细读报错发现一个变量名PKG_CONFIG_PATH,这就好办了,编辑/etc/profile这个文件添加这个变量:

export PKG_CONFIG_PATH=$X264_HOME/lib/pkgconfig

然后保存,执行

source /etc/profile

再次切换到ffmpeg下执行./configure…那些命令,发现好了!

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值