软考系统架构设计师知识点-数学与经济管理

知识点概览

  • 线性规划:在一组约束条件下求目标函数的极大值或极小值
  • 蒙特卡罗方法:工作原理、应用案例
  • 数学建模:数学建模过程、数学建模方法、数学建模原则
  • 动态规划:基本思想
  • 决策论:决策的六个要素、决策论的分类、不确定型决策的五种方案

线性规划

线性规划是研究在有限的资源条件下,如果有效地使用这些资源达到预定目标的数学方法,即在一组约束条件下求目标函数的极值(极大值或极小值)。

线性规划问题的数学模型通常由线性目标函数、线性约束条件、变量非负条件组成(实际问题中的变量一般都是非负的)。

线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。

线性规划问题的最优解:无可行解、无最优解、一个最优解或无穷多个最优解。

快速解题步骤(求交点):①根据题目条件列出不等式或不等式组;②将不等关系特殊化为等式,两两等式联立求交点;③若交点值满足所有约束条件,直接代入目标函数求得极值即可;若交点值不满足约束条件,继续计算其他两两等式。(若交点值不满足实际情况,取附近值即可,如小数个人)。

蒙特卡罗方法

蒙特卡罗(MonteCarlo)方法由冯·诺依曼、乌拉姆等人发明,因赌场而得名,是一类基于概率的方法的统称

工作原理

使用随机数来解决计算问题。不断抽样,逐渐逼近,采样越多,越近似最优解。例如民意调查,π的计算。

应用案例

扇形面积 =(πr^2)/4 ,正方形面积=r^2,扇形面积/正方形面积 =(π+r2)/4/r2=π/4。现往正方形内随机打点,在扇形内点的概率=扇形面积/正方形面积 =π/4 ,即可求得π=概率4。

数学建模<

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张道天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值