知识点概览
- 线性规划:在一组约束条件下求目标函数的极大值或极小值
- 蒙特卡罗方法:工作原理、应用案例
- 数学建模:数学建模过程、数学建模方法、数学建模原则
- 动态规划:基本思想
- 决策论:决策的六个要素、决策论的分类、不确定型决策的五种方案
线性规划
线性规划是研究在有限的资源条件下,如果有效地使用这些资源达到预定目标的数学方法,即在一组约束条件下求目标函数的极值(极大值或极小值)。
线性规划问题的数学模型通常由线性目标函数、线性约束条件、变量非负条件组成(实际问题中的变量一般都是非负的)。
线性规划问题就是面向实际应用,求解一组非负变量,使其满足给定的一组线性约束条件,并使某个线性目标函数达到极值。满足这些约束条件的非负变量组的集合称为可行解域。可行解域中使目标函数达到极值的解称为最优解。
线性规划问题的最优解:无可行解、无最优解、一个最优解或无穷多个最优解。
快速解题步骤(求交点):①根据题目条件列出不等式或不等式组;②将不等关系特殊化为等式,两两等式联立求交点;③若交点值满足所有约束条件,直接代入目标函数求得极值即可;若交点值不满足约束条件,继续计算其他两两等式。(若交点值不满足实际情况,取附近值即可,如小数个人)。
蒙特卡罗方法
蒙特卡罗(MonteCarlo)方法由冯·诺依曼、乌拉姆等人发明,因赌场而得名,是一类基于概率的方法的统称
工作原理
使用随机数来解决计算问题。不断抽样,逐渐逼近,采样越多,越近似最优解。例如民意调查,π的计算。
应用案例
扇形面积 =(πr^2)/4 ,正方形面积=r^2,扇形面积/正方形面积 =(π+r2)/4/r2=π/4。现往正方形内随机打点,在扇形内点的概率=扇形面积/正方形面积 =π/4 ,即可求得π=概率4。

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



