building machine learning system with Python 学习笔记--从零开始机器学习(2)第一章

本文介绍了Python机器学习的基本流程,强调数据预处理的重要性,特别是特征工程。推荐了相关资源,如问答网站和博客,并详细讲解了numpy的基础操作,包括数组创建、索引访问、数据修剪以及与Python列表的性能对比。同时提到了scipy在机器学习中的作用,展示了scipy与numpy的密切关系及一些常用方法。
摘要由CSDN通过智能技术生成

Python机器学习入门

ps:想了解机器学习发展历史、使命、面临的问题这些的可以看百度BOSS李彦宏新书《智能革命》,挺通俗易懂的。


机器学习的目标就是通过若干示例让机器学会完成人物,例如电子邮件分类。

工作流程绝大部分的时间花在:

1)读取和清洗数据

2)探索和理解输入数据

3)分析如何最好地将数据呈现给学习算法

4)选择正确的模型和学习算法

5)正确地评估性能

通常在训练前要对部分数据进行提炼,一个简单算法在提炼后数据上的表现,甚至能够超过一个非常复杂的算法在原始数据上的结果。提炼数据的流程叫做特征工程--feature engineering。

可以看到算法只是五个环节中的一个,1)、2)、3)都和数据有关。

推荐的问答网站:http://metaoptimize.com/qa 专注机器学习主题

http://stats.stackexchange.com 专注统计问题

http://stackoverflow.c

Title: Building Machine Learning Systems with Python, 2nd Edition Author: Willi Richert Length: 326 pages Edition: 1 Language: English Publisher: Packt Publishing Publication Date: 2015-03-31 ISBN-10: 1784392774 ISBN-13: 9781784392772 Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python is a wonderful language to develop machine learning applications. As a dynamic language, it allows for fast exploration and experimentation. With its excellent collection of open source machine learning libraries you can focus on the task at hand while being able to quickly try out many ideas. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and introducing libraries. You’ll quickly get to grips with serious, real-world projects on datasets, using modeling, creating recommendation systems. Later on, the book covers advanced topics such as topic modeling, basket analysis, and cloud computing. These will extend your abilities and enable you to create large complex systems. With this book, you gain the tools and understanding required to build your own systems, tailored to solve your real-world data analysis problems. Table of Contents Chapter 1. Getting Started with Python Machine Learning Chapter 2. Classifying with Real-world Examples Chapter 3. Clustering – Finding Related Posts Chapter 4. Topic Modeling Chapter 5. Classification – Detecting Poor Answers Chapter 6. Classification II – Sentiment Analysis Chapter 7. Regression Chapter 8. Recommendations Chapter 9. Classification – Music Genre Classification Chapter 10. Computer Vision Chapter 11. Dimensionality Reduction Chapter 12. Bigger Data
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值