GDOI2016模拟8.15送票

题目
Mirko准备带他所有的朋友去Zaz演唱会。他已经拿到了票,现在在回去派送门票的路上。

Mirko朋友的住所都可以用直角坐标系来表示。他在走路的时候,只能经过整数坐标点。他走一步可以移动到相邻的八个整数坐标点(上,下,左,右,上左,下左,上右,下右)。

Mirko的每个朋友住在一些整数坐标点(x,y)上,而且愿意走一段距离去见Mirko。具体来说,Mirko可以在离他朋友家里不超过P步的地方见他的朋友,P取决于他朋友的慵懒程度。

当他完成派送门票的事后,Mirko回想起了他见朋友的顺序。计算Mirko在这段路上走的最少可能的步数。Mirko的起始点和终止点是未知的。

显然,这题时切比雪夫距离,第i个朋友的覆盖范围是一个len*2为边长的矩形。
这题我们可以没必要知道起点和终点的具体位置,但可以知道最短距离能到达的位置的集合。

举例来说,就是我们现在位于一个矩形内(表示通过最短距离到第i个矩阵内的终点集合S),那么现在我们要到i+1个矩形内,那么我们只需知道S最少走L步能与第i+1个矩形相交,那么答案就加上L(这个可以二分,也可以直接几个if判断一下)(因为我们不必知道它走到哪里,只需知道他能走最少步数走到哪里)然后求交的出新的终点集合S

贴代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define N 200001
using namespace std;
int n;
long long ans;
struct node{
    long long x1,y1,x2,y2;
}s,a;
node expand(node a,long long b){
    a.x1-=b,a.y1-=b;
    a.x2+=b,a.y2+=b;
    return a;
}
node jiao(node a,node b){
    a.x1=max(a.x1,b.x1);
    a.x2=min(a.x2,b.x2);
    a.y1=max(a.y1,b.y1);
    a.y2=min(a.y2,b.y2);
    return a;
}
bool in(node a,long long x,long long y){
    return a.x1<=x&&x<=a.x2&&a.y1<=y&&y<=a.y2;
}
bool jian1(node a,node b){
    return in(a,b.x1,b.y1)&&in(a,b.x1,b.y2)&&in(a,b.x2,b.y1)&&in(a,b.x2,b.y2);
}
bool jian(node a,node b){
    static node c;
    c=jiao(a,b);
    return jian1(b,c)&&jian1(b,c);
}
int er(node a,node b){
    static long long l,r,mid;
    l=0;
    r=200000000;
    while (l<=r)
        if (jian(expand(a,mid=(l+r)/2),b))r=mid-1;else l=mid+1;
    if (l<0)l=0;
    while (l&&jian(expand(a,l-1),b))l--;
    while (!jian(expand(a,l),b))l++;
    return l;
}
void init(){
    static int x,y,p,len;
    scanf("%d",&n);
    scanf("%d %d %d",&x,&y,&p);
    s.x1=x-p,s.x2=x+p;
    s.y1=y-p,s.y2=y+p;
    for (int i=2;i<=n;i++){
        scanf("%d %d %d",&x,&y,&p);
        a.x1=x-p,a.x2=x+p;
        a.y1=y-p,a.y2=y+p;
        len=er(s,a);
        s=jiao(expand(s,len),a);
        ans+=len;
    }
}
void write(){
    printf("%lld",ans);
}
int main(){
    init();
    write();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值