题目链接:
http://acm.nyist.net/JudgeOnline/problem.php?pid=448
描述
请在整数 n 中删除m个数字, 使得余下的数字按原次序组成的新数最大,
比如当n=92081346718538,m=10时,则新的最大数是9888
输入
第一行输入一个正整数T,表示有T组测试数据
每组测试数据占一行,每行有两个数n,m(n可能是一个很大的整数,但其位数不超过100位,并且保证数据首位非0,m小于整数n的位数)
输出
每组测试数据的输出占一行,输出剩余的数字按原次序组成的最大新数
样例输入
2 92081346718538 10 1008908 5 |
样例输出
9888 98 |
算法思想:
这是一道贪心算法,假设总共有n位数,要删除m位数,故留下n - m位数。如何选取这n - m位数,是使用贪心算法,因为位置从低位到高位为输的高位到低位,这个需要注意。
数要从高位到低位选取,每次选取留下的最大的数,选取的范围在上次选取结果的后一位开始(初始选取的开始位置为0)至m + i + 1位,其中m代表要删除数的数量,i为当前已经选取好留下来的数的数量。之所以选取范围是这样,是因为至少要留下m - i位数供低位选择,以免后面不够选取,而开始的位置应该是上一位选取好的数的下一个位置。
如1589637405 m = 4,删除4位,留下6位数。
过程如图所示:
过程描述:
当i = 1时,选取留下的数的最高位,开始位置为0,结束位置为4,因为至少要留下5位数供后面选取,最大数为9,故选取的数是9,选取的位置为3(计算机以0开始)。
当i = 2时,选取留下的数的次高位,开始位置为3 + 1(上一次选取数的后一位开始),结束位置为5,因为后面至少要留4位数给后面选取。选取的最大数为6,选取的位置为4。
以此类推,即可选取好所有需要留下来的数。
源代码
#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
//标记数组,用于标记数是否留下
int flage[101];
/*
选取起始位置为start,结束位置为end(不等于end)的最大数
返回最大数的位置
*/
int getMax(string str,int start,int end)
{
char ch = str[start];
int pos = start;
for (int i = start; i < end; i++)
{
if (str[i] > ch && !flage[i])
{
ch = str[i];
pos = i;
}
}
return pos;
}
int main()
{
int T, m, num;
string str;
char ch[101];
cin >> T;
while (T--)
{
num = 0;
memset(flage,0,101);
cin >> str >> m;
int len = str.length();
int num = len - m;
int pos = -1;
for (int i = 0; i < num; i++)
{
//循环找到每一位需要留下来的数,并将其标记为1
pos = getMax(str,pos + 1,m + i + 1);
flage[pos] = 1;
}
//输出
for (int i = 0; i < len; i++)
{
if (flage[i])
cout << str[i];
}
cout << endl;
}
return 0;
}
最优源代码
#include <stdio.h>
#include <string.h>
int main()
{
int k,l,max,z;
char s[105],ans[105];
scanf("%d",&z);
while(z--)
{
scanf("%s%d",s,&k);
l = strlen(s);
for(int i=0,q=-1;i<l-k;i++)
{
max = 0;
for(int j=q+1;j<=k+i;j++)
if(max < s[j])
max = s[j] , q = j;
ans[i] = max;
}
ans[l-k] = '\0';
puts(ans);
}
return 0;
}
算法复杂度:
由源代码可知,两种算法是一样的,故时间复杂度为O(num * len)。其中num为要留下的数,len为输入数(字符串)的长度。