介绍
匈牙利算法用于解决求最大分配的分配问题,不等权重的二分图中求最大权分配的分配问题,使用KM算法。
本文首先介绍匈牙利算法所针对的二分问题
然后介绍匈牙利算法的原理
最后有匈牙利算法证明,证明为何使用该算法可以找到最大匹配
一个典型的分配问题是工作分配,假设有M份工作,总共有N个候选人,假设M小于等于N,表示候选人n胜任工作m,因此我们得到一个关联矩阵
:
对应的图G为
二分图
二分图定义
二分图又称作二部图,是图论中的一种特殊模型。
设G=(V, E)是一个无向图。如果顶点集V可分割为两个互不相交的子集X和Y,并且图中每条边连接的两个顶点一个在X中,另一个在Y中,则称图G为二分图。
二分图性质
定理:当且仅当无向图G的每一个回路的次数均是偶数时,G才是一个二分图。如果无回路,相当于任一回路的次数为0,故也视为二分图。
二分图判断
如果一个图是连通的,可以用如下的方法判定是否是二分图:
在图中任选一顶点v,定义其距离标号为0,然后把它的邻接点的距离标号均设为1,接着把所有标号为1的邻接点均标号为2(如果该点未标号的话),如图所示,以此类推。
标号过程可以用一次BFS实现。标号后,所有标号为奇数的点归为X部,标号为偶数的点归为Y部。
接下来,二分图的判定就是依次检查每条边,看两个端点是否是一个在X部,一个在Y部。
如果一个图不连通,则在每个连通块中作判定。
二分图匹配
给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。
匹配的数量等于E的边数量。下图加粗红色的是一个边数量为2的匹配。
最大匹配
G的所有子图中边数量最大的匹配成为最大匹配。如上图所示例子,最大边数为3的子图只有一种:
完全匹配(完备匹配)
对于数量较少的子集(如上图L或者R),子集中的每个顶点都和子图中的某条边关联,则称该子图所构成的匹配为完全匹配。
完全匹配一定是最大匹配,反过来则不一定。
本质上就是给数量较少的子集所有元素都给匹配了。
研究二分匹配的问题是为了寻找最大匹配,如何寻找?借助增广路径
增广路径的定义
增广路径的定义:设M为二分图G已匹配边的集合,如下图所示红色边
若P是图G中一条连通两个未匹配顶点的路径(P的起点在X部,终点在Y部,反之亦可),并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。如下图黄红色路径2-A-1-C
增广路径是一条“交错轨”。
它的第一条边和最后一条边都是目前还没有参与匹配的。因为路径的起点和终点还没有被匹配。
这样交错进行,显然P有奇数条边,因为路径中不存在回路,总共有偶数个顶点。并且属于M的边数比不属于M的边数少1。
匹配增广
当我们找到一条增广路径时,当我们把路径上属于M(已经匹配的边集合)的