论文阅读:Improving Temporal Relation Extraction with a Globally Acquired Statistical Resource

Improving Temporal Relation Extraction with a Globally Acquired Statistical Resource


Statistical Resource)

  • 作者:Qiang Ning, Hao Wu, Haoruo Peng, Dan Roth
  • 时间:2018

解决的问题

依旧是时间关系识别!作者本文的思路是考虑该任务是否能够从外部资源中获益,类似于目前自然语言处理的许多任务都在寻求从知识图谱中获益一样。只不过知识图谱很多,而时间关系识别相关的外部资源较少。

难点及贡献

  • 难点:时间关系识别任务!个人感觉相对来说还算是一个比较冷门的研究领域,文章也比较少,前人的不少研究都是基于很多手工设计特征的方式进行,在目前深度学习遍地跑的时代,如何从中获益,是仁者见仁智者见智的。当然该任务也是一直受制于数据标注十分困难以及数据质量不是特别的!理想等原因,任务效果的提升一直是慢热的。
  • 贡献:作者构建了一个概率知识库,该知识库有益于许多时间关系识别模型。
  • 灵感来源:作者发现了一个很有意思的现象,把一个句子中的两个事件词去掉,仅仅凭借上下文信息是没有办法推测出两个事件词的时间先后关系的,而且即使是相同的上下文,不同的事件对也可存在不同的时间关系。因此可以得出结论:事件词本身蕴含了许多时间信息,它可以为我们提供一定的先验知识,使我们做出时间关系判断的必要部分。
    但是部分前人在时间关系识别中的研究都是很大程度上依赖于上下文信息的。
    综上,可以发现前人研究中都忽略了事件词本身所具有的不依赖于上下文的时间关系(反过来看不一样的上下文会导致相同事件队不一样的时间关系吗。。嗯。。废话)。

主要内容

在这里插入图片描述
作者将这个概率知识库称为Temprob,上图给出知识库中简单的例子
很显然上述知识库需要以下两步:

  1. 抽取事件:事件通常被理解为一个与参与者相关的动作!所以作者使用语义角色标记的方法来提取事件,并且只关注谓语动词而不管名词。
  2. 抽取关系:
  • 在抽取出事件词之后,事件词两两成对,并判断事件关系,所用到的特征如下:
    • 词性:包括事件词以及周围3个词的
    • 事件词之间的距离
    • 事件提及之间的情态动词
    • 事件提及之间的时间连接词
    • 两个事件词是否在wordnet的同义词集上拥有相同的同义词
    • 输入事件提及是否具有从WordNet派生出来的公共派生形式
    • 分别包含 覆盖每个事件词的介词短语 的首词
  • 训练:
    • 数据来源:timebank-dense
    • 保留TBDENSE中由动词组成的关系标注(大概占总标注的85%)
    • 事件词分布在不同的句子中,所以存在跨多个句子的关系(TBDENSE只存在单个句子或者两个相邻句子)所以构建两个分类器一个负责单句的关系判断,一个负责相邻句子的跨句关系判断
  • 语料库:纽约时报近20年的文章,共提取出51k个事件词和80M个时间关系
  • 有趣的统计:首先介绍两个概念,时间(temporally)上的先后以及物理(physically)出现上的先后。
    • 极端情况:知识库中会出现许多事件对的时间关系(before,after)概率在90以上。概率的计算就是简单的频率统计。作者发现许多TBDense中的事件对的时间顺序和物理出现顺序是不一致的,也就是说不能仅仅考虑物理出现顺序。
    • 分布:作者统计得到了对于某一事件词V,在V之前的以及之后的事件词的概率分布,概率计算如下
      在这里插入图片描述
      分母对应事件词V所有具有before的事件对计数,分子为V’在V之前的计数。
      例子:
      在这里插入图片描述

实验结果

  1. 知识库的质量分析:前面简单的统计概率,其正确性是否能够保证,这一小节作者做出了验证。作者将知识库中的统计概率假设为某模型的预测概率,并设置概率阈值,再将其与数据库TBDense中的真实标签作对比,看是否一致。在这里插入图片描述
    为了结论的一般性,作者还是用了其他数据集进行验证,结果类似不再赘述。
  2. 提升时间关系抽取的效果
  • 作者从两个方面证明从该知识库中获得的先验分布的有效性:
    • 作为局部方法中的特征:在关系分类模型的特征中加入两类特征,一个是ηb(before,after的概率分布),一个是所有标签的先验概率分布在这里插入图片描述结果如下:在这里插入图片描述
    • 作为全局方法中的正则化条件:在目标函数中加入标签的先验分布作为正则项。
      在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 提升单目深度估计方法来改进海洋透视。 海洋透视是指由于海洋介质的光学特性,人眼在水下观察物体时出现的模糊和失真现象。为了改善海洋透视,可以利用单目深度估计方法。 单目深度估计是借助计算机视觉技术来估计图像中每个像素点与相机的距离。在传统的单目深度估计方法中,主要依赖于图像中的几何和纹理信息来推断深度。然而,在海洋环境中,由于光线的折射和散射,图像中的几何和纹理信息丧失较多,导致传统方法的准确性下降。 为了克服这个问题,可以通过改进单目深度估计方法来提高海洋透视的效果。一种方法是利用深度学习技术,通过训练神经网络来学习从输入图像中预测深度的映射关系。可以使用已标注的水下图像数据集进行监督学习,使网络能够学习到更准确的深度估计模型。另外,还可以对网络进行迁移学习,使用在陆地环境下预训练的模型,在海洋环境中进行微调,以适应海洋透视的特殊情况。 另一个改进单目深度估计方法的途径是改进特征提取和匹配算法。可以通过使用更好的特征描述子和特征匹配算法,提高单目深度估计的稳定性和准确性。例如,可以使用基于学习的描述子,如深度卷积神经网络提取图像特征,再通过优化的匹配算法实现更准确的深度估计。 总之,通过利用深度学习和改进特征提取与匹配算法,可以显著提高单目深度估计方法在海洋透视上的效果。这将有助于提高水下图像的质量和可视性,在海洋环境下进行相关应用和研究。 ### 回答2: 提升单目深度估计方法以改善水下透视。水下透视是指我们在水下看到的物体变得模糊和失真的现象。为了解决这个问题,研究人员一直在探索使用单目深度估计方法来改善水下透视。 单目深度估计是通过使用单个摄像机来估计图像中物体的距离和深度。在水下,由于水的折射效应,光线会发生折射,导致图像失真。因此,传统的单目深度估计方法往往无法准确估计水下的物体距离和深度。 为了解决这个问题,研究人员提出了一些改进的单目深度估计方法。这些方法包括使用水下场景中的先验知识和模型,从而更好地估计水下物体的深度。例如,可以通过水下传感器捕获的信息来构建水下场景模型,并在深度估计过程中结合使用。此外,还可以利用水下图像的颜色和纹理信息,通过神经网络和机器学习方法进行深度估计。 这些改进的单目深度估计方法的应用可以在水下摄影、水下导航和水下探测等领域中发挥重要作用。例如,在水下摄影中,利用改进的深度估计方法可以提高图像的清晰度和质量,使得拍摄的照片更加真实和可视化。在水下导航和探测中,使用改进的单目深度估计方法可以提供更准确的水下环境信息,从而帮助人们更好地识别、定位和探测水下物体。 总之,改进的单目深度估计方法可以有效地改善水下透视问题,并在水下领域的各个应用中发挥重要作用。随着技术的不断发展,相信这些方法将进一步提升水下图像和数据的质量和可用性。 ### 回答3: 提升海洋透视图像的质量可以通过单目深度估计方法来实现。海洋透视图像通常受到水下湍流、波浪和光线散射等因素的影响,导致图像质量下降。而单目深度估计方法可以通过分析图像中的视差信息来估计场景中的深度信息。 单目深度估计方法有多种实现方式,其中一种常用的方法是基于卷积神经网络(CNN)。该方法通过训练一个深度估计网络,从输入图像中直接预测每个像素的深度信息。训练过程使用带有深度标签的真实图像和对应的深度地图进行,可以通过最小化预测深度与真实深度之间的差异来优化网络参数。 通过使用单目深度估计方法,可以从原始的海洋透视图像中获取更准确和清晰的深度信息。这将有助于改善海洋透视图像的视觉效果和质量。准确的深度信息可以用于场景还原、物体分割和虚实混合等应用中。此外,通过深度估计,还可以对图像进行后续处理,如去除湍流和波浪的影响,进一步提高视觉效果。 总而言之,使用单目深度估计方法可以有效地改善海洋透视图像的质量。这一方法通过分析图像中的视差信息来预测深度信息,从而提供更准确和清晰的深度信息。这将有助于改善海洋透视图像的视觉效果和质量,并为进一步的图像处理提供基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值