数据结构与算法之LRU缓存算法

本文详细介绍了几种常见的缓存淘汰算法,包括LRU(最近最少使用)、LRU-K(扩展的最近最少使用)、2Q算法以及MultiQueue(多队列)算法。这些算法的核心思想是优化缓存的命中率,通过不同的策略处理数据的访问历史。LRU简单但易受批量操作影响,LRU-K和2Q在一定程度上解决了这个问题,而MQ则根据访问频率划分优先级。各算法在复杂度和内存消耗上有所不同,适用于不同的场景需求。
摘要由CSDN通过智能技术生成

LRU是什么

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。LRU作为页面置换算法,常见的页面置换算法如下

常见的页面置换算法有如下几种:

  • LRU 最近最久未使用
  • FIFO 先进先出置换算法 类似队列
  • OPT 最佳置换算法 (理想中存在的)
  • NRU Clock置换算法
  • LFU 最少使用置换算法
  • PBA 页面缓冲算法

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下
LRU简单描述

新数据插入到链表头部;

  • 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
  • 当链表满的时候,将链表尾部的数据丢弃。

【命中率】
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。
【复杂度】
实现简单。
【代价】
命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

LRU-K原理

LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:
LRU-K

  • 数据第一次被访问,加入到访问历史列表;
  • 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;
  • 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;
  • 缓存数据队列中被再次访问后,重新排序;
  • 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。
  • LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

【命中率】
LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。
【复杂度】
LRU-K队列是一个优先级队列,算法复杂度和代价比较高。
【代价】
由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。
LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。

URL-Two queues原理

Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。
当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:

LRU-2queues

新访问的数据插入到FIFO队列;

  • 如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;
  • 如果数据在FIFO队列中被再次访问,则将数据移到LRU队列头部;
  • 如果数据在LRU队列再次被访问,则将数据移到LRU队列头部;
    LRU队列淘汰末尾的数据。
    【命中率】
    2Q算法的命中率要高于LRU。
    【复杂度】
    需要两个队列,但两个队列本身都比较简单。
    【代价】
    FIFO和LRU的代价之和。
    2Q算法和LRU-2算法命中率类似,内存消耗也比较接近,但对于最后缓存的数据来说,2Q会减少一次从原始存储读取数据或者计算数据的操作。

Multi Queue原理

MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据。
MQ算法将缓存划分为多个LRU队列,每个队列对应不同的访问优先级。访问优先级是根据访问次数计算出来的,例如
详细的算法结构图如下,Q0,Q1…Qk代表不同的优先级队列,Q-history代表从缓存中淘汰数据,但记录了数据的索引和引用次数的队列:
Multi Queues

如上图,算法详细描述如下:

  • 新插入的数据放入Q0;
  • 每个队列按照LRU管理数据;
  • 当数据的访问次数达到一定次数,需要提升优先级时,将数据从当前队列删除,加入到高一级队列的头部;
  • 为了防止高优先级数据永远不被淘汰,当数据在指定的时间里访问没有被访问时,需要降低优先级,将数据从当前队列删除,加入到低一级的队列头部;
  • 需要淘汰数据时,从最低一级队列开始按照LRU淘汰;每个队列淘汰数据时,将数据从缓存中删除,将数据索引加入Q-history头部;
  • 如果数据在Q-history中被重新访问,则重新计算其优先级,移到目标队列的头部;
    Q-history按照LRU淘汰数据的索引。
    【命中率】
    MQ降低了“缓存污染”带来的问题,命中率比LRU要高。
    【复杂度】
    MQ需要维护多个队列,且需要维护每个数据的访问时间,复杂度比LRU高。
    【代价】
    MQ需要记录每个数据的访问时间,需要定时扫描所有队列,代价比LRU要高。
    注:虽然MQ的队列看起来数量比较多,但由于所有队列之和受限于缓存容量的大小,因此这里多个队列长度之和和一个LRU队列是一样的,因此队列扫描性能也相近。

参考链接

1.LRU算法缓存算法实现

2.LRU算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值