连续子数组的最大和

一、问题描述

给定一个数组, 找出数组的一个连续子数组, 这个子数组的和最大;

遍历数组,将数组的值加入到sum中, 如果sum大于0, 继续遍历下一个数据, 如果sum小于等于0,说明前面的子数组是无用的,丢弃前面的数组,从下一个数组开始继续遍历;

二、连续子数组的最大和代码实现

#include <stdio.h>
#include <stdlib.h>

int FindBiggestSum(int* arr, int len) {
	int curSum = 0;
	int result = 0;
	for (int i = 0; i < len; i++) {
		if (curSum <= 0)
			curSum = 0;
		curSum += arr[i];
		result = max(curSum, result);
	}
	return result;
}

int main()
{
	int arr[] = { 1, -2, 3, 10, -4, 7, 2, -5 };
	int len = sizeof(arr) / sizeof(arr[0]);
	int ret = FindBiggestSum(arr, len);
	printf("%d ", ret);
	
	return 0;
}

三、使用动态规划求解连续子数组最大和问题

问题描述为求解数组{a1, a2, a3, …, ai} 的连续子数组最大和。原问题S(1, i)可以分解为子问题S(1, i-1)。 因此其子问题空间是一维的;
当子问题的解<= 0的时候, 原问题的解 = ai;
当子问题的解 > 0的时候, 原问题的解 = 子问题的解 + ai;
需要考虑ai为负数的时候, 原问题的解因为加上ai, 实际上变小了;因此需要一个额外的空间result,记录循环过程中的最大值,当原问题的解大于result时候才更新result;

在这里插入图片描述
动态规划代码实现:

#include <stdio.h>
#include <stdlib.h>


int FindBiggestSum(int* arr, int len) {
	int sum = arr[0];
	int result = arr[0];
	//边界条件
	for (int i = 1; i < len; i++) {
		if (sum <= 0)
			sum = arr[i];
		else
			sum = sum + arr[i];
		result = max(sum, result);
	}
	return result;
}

int main()
{
	int arr[] = { 1, -2, 3, 10, -4, 7, 2, -5 };
	int len = sizeof(arr) / sizeof(arr[0]);
	int ret = FindBiggestSum(arr, len);

	printf("%d ", ret);
	return 0;
}

使用递归式的动态规划求解问题,将子空间中的问题记录在数组中, 然后在数组中找出最大值;

使用动态规划:

#include <stdio.h>
#include <stdlib.h>

int FindBiggestSum(int* arr, int *m, int len) {
	if (len == 0) {
		m[0] = arr[0] ? arr[0] : 0;
		return m[0];
	}

	int prev = FindBiggestSum(arr, m, len-1);
	if (prev <= 0)
		m[len - 1] = arr[len - 1];
	else
		m[len - 1] = prev + arr[len - 1];
	return m[len - 1];
}

int FindArrMax(int* arr, int len) {
	int tmp = 0;
	for (int i = 0; i < len; i++)
		if (arr[i] > tmp)
			tmp = arr[i];
	return tmp;
}

int main()
{
	int arr[] = { 1, -2, 3, 10, -4, 7, 2, -5 };
	int len = sizeof(arr) / sizeof(arr[0]);
	int *m = (int*)malloc(sizeof(int) * len);

	FindBiggestSum(arr, m, len);
	for (int i = 0; i < len; i++)
		printf("%d ", m[i]);
	printf("\n");

	int ret = FindArrMax(m, len);
	printf("the max sum: %d\n", ret);
	   
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值