一、问题描述
给定一个数组, 找出数组的一个连续子数组, 这个子数组的和最大;
遍历数组,将数组的值加入到sum中, 如果sum大于0, 继续遍历下一个数据, 如果sum小于等于0,说明前面的子数组是无用的,丢弃前面的数组,从下一个数组开始继续遍历;
二、连续子数组的最大和代码实现
#include <stdio.h>
#include <stdlib.h>
int FindBiggestSum(int* arr, int len) {
int curSum = 0;
int result = 0;
for (int i = 0; i < len; i++) {
if (curSum <= 0)
curSum = 0;
curSum += arr[i];
result = max(curSum, result);
}
return result;
}
int main()
{
int arr[] = { 1, -2, 3, 10, -4, 7, 2, -5 };
int len = sizeof(arr) / sizeof(arr[0]);
int ret = FindBiggestSum(arr, len);
printf("%d ", ret);
return 0;
}
三、使用动态规划求解连续子数组最大和问题
问题描述为求解数组{a1, a2, a3, …, ai} 的连续子数组最大和。原问题S(1, i)可以分解为子问题S(1, i-1)。 因此其子问题空间是一维的;
当子问题的解<= 0的时候, 原问题的解 = ai;
当子问题的解 > 0的时候, 原问题的解 = 子问题的解 + ai;
需要考虑ai为负数的时候, 原问题的解因为加上ai, 实际上变小了;因此需要一个额外的空间result,记录循环过程中的最大值,当原问题的解大于result时候才更新result;
动态规划代码实现:
#include <stdio.h>
#include <stdlib.h>
int FindBiggestSum(int* arr, int len) {
int sum = arr[0];
int result = arr[0];
//边界条件
for (int i = 1; i < len; i++) {
if (sum <= 0)
sum = arr[i];
else
sum = sum + arr[i];
result = max(sum, result);
}
return result;
}
int main()
{
int arr[] = { 1, -2, 3, 10, -4, 7, 2, -5 };
int len = sizeof(arr) / sizeof(arr[0]);
int ret = FindBiggestSum(arr, len);
printf("%d ", ret);
return 0;
}
使用递归式的动态规划求解问题,将子空间中的问题记录在数组中, 然后在数组中找出最大值;
使用动态规划:
#include <stdio.h>
#include <stdlib.h>
int FindBiggestSum(int* arr, int *m, int len) {
if (len == 0) {
m[0] = arr[0] ? arr[0] : 0;
return m[0];
}
int prev = FindBiggestSum(arr, m, len-1);
if (prev <= 0)
m[len - 1] = arr[len - 1];
else
m[len - 1] = prev + arr[len - 1];
return m[len - 1];
}
int FindArrMax(int* arr, int len) {
int tmp = 0;
for (int i = 0; i < len; i++)
if (arr[i] > tmp)
tmp = arr[i];
return tmp;
}
int main()
{
int arr[] = { 1, -2, 3, 10, -4, 7, 2, -5 };
int len = sizeof(arr) / sizeof(arr[0]);
int *m = (int*)malloc(sizeof(int) * len);
FindBiggestSum(arr, m, len);
for (int i = 0; i < len; i++)
printf("%d ", m[i]);
printf("\n");
int ret = FindArrMax(m, len);
printf("the max sum: %d\n", ret);
return 0;
}