神经网络中的激活函数

一、为什么需要激活函数?

首先回忆一下单层感知器的结构。
在这里插入图片描述
在前面的文章中,我们提到了感知器,单层感知器的基本表达式如式(1)所示,假设该表达式中如果去除激活函数f,则每一层输出的都是上一层输入的线性函数,无法解决非线性问题,因此我们需要通过激活函数将非线性因素引入网络中。
还记得之前的异或问题吗?我们采用的是多层感知器去进行分类,其中使用的激活函数是step激活函数(即阶跃函数),因此基于这一点我们可以看出激活函数有助于解决非线性问题。多层感知器确实能够解决异或问题等非线性问题,但是因为step函数是线性的激活函数,它是通过线性组合的方式解决,因此我们可以采用一些非线性的激活函数来更高效地解决非线性问题,因为非线性函数具有曲率,激活函数若具有非线性特性,则将有利于复杂的应用。下面对激活函数展开介绍。

二、激活函数介绍

1、阶跃函数(step)

阶跃函数即之前提到的step函数,该函数应用于感知器,一般阶跃函数是以阈值为分界,当输入小于等于0,输出0,否则输出1,如图1所示。如果阈值不为0,比如设阈值h,当输入小于等于h,输出0,否则输出1,如图2所示。在这里插入图片描述
阶跃函数属于线性激活函数,不是很适合用于解决非线性问题,因此下面引入较为流行的非线性激活函数。

2、流行的激活函数

在这里插入图片描述

3、Step函数和Sigmoid函数的对比和联系

Sigmoid函数对应的是平滑的曲线,输出随着输入发生连续性变化,变化平缓,而阶跃函数是分段函数,在0或者阈值的临界点上,输出发生了急剧变化。在数值方面,阶跃函数只能返回0或1,而sigmoid函数返回0-1之间的连续值。如果将感知器的step函数替换为sigmoid等函数,则会从感知机步入神经网络中,这也是神经网络为什么能解决非线性问题的原因。

三、好的激活函数的衡量标准

1、是否出现梯度消失

在权衡激活函数的好坏与否,经常会提到一个问题,那就是梯度消失。接下来讲解一下梯度消失。

(1)什么是梯度消失

根据梯度下降一文中的讲解,梯度展示了权重的调整量,如果梯度消失,那就是权重更新量非常小,这样一来,在误差反向传播的过程中,越靠近输入层,更靠近输入层与隐藏层的权重更新就会停止,这样就不能顺利实现反向传播,相当于后几层隐含层自己在学习,影响学习效果。

(2)为什么会产生梯度消失

还是在前面梯度下降一文中,我们提到梯度的求解可视为求偏导,还提到在求偏导的过程中需要根据连续求导法则进行,也就是复合函数的链式求导,得到完整的偏导表达式(即梯度的表达式),假设记为L。链式求导的过程中一定会对激活函数进行求导得到表达式,假设记为S,而且求导表达式S会包含在偏导表达式L中,在反向传播的过程中会逐层将偏导表达式L相乘,如果结果越来越小,当变为0时,就出现了梯度消失。
比如sigmoid,其导数图如下:

在这里插入图片描述
(图来源网络)
根据上面描述,在偏导的表达式中(即梯度表达式),会乘上f’(x),上图中我们也可以看出sigmoid函数导数的取值范围在0-0.25之间,随着层数的增加,不同层的导数值相乘次数越来越多,而且导数值都是小于1,因此会慢慢趋于零,导致梯度消失。
由于Tanh函数是sigmoid的变形,其导数值也是在0-1之间,如下图所示,因此也存在梯度消失的问题。
在这里插入图片描述
(图来源网络)
但是Relu不会存在梯度消失,为什么呢?通过下图,Relu的导数图,我们可以看出,正数部分的导数恒为1,因此随着层数增加,梯度表达式不会为0,因此不会出现梯度消失。
在这里插入图片描述
(图来源网络)

2、输出是否以0为中心

如果不是以0为中心,则会致神经网络收敛偏慢,这需要从更新过程中符号问题进行分析,较为冗长,此处暂不分析。
所谓的收敛速度是指在训练过程中,如果需要的很多迭代轮次才能找到最优解,则称收敛速度慢;反之,称收敛速度快。

四、基于Relu的改进激活函数

Relu函数是目前神经网络中最为流行的激活函数,很多学者对于其中的不足都进行了改进,如下图列举的两种,如果有兴趣可以深入研究。
在这里插入图片描述
以上仅个人理解,如有问题,欢迎交流讨论。
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值