算法竞赛入门经典读书笔记——二叉树

这里写图片描述
这里写图片描述
数组的方式很简单,就是从根节点开始1,2,3依次标号,左节点是 父节点*2,右节点是 父节点*2+1。这种方法的缺点就是需要大量的空间保存数组(包括很多空节点)。例如树共有n层,则需要长度为2^n-1的数组。

还有一种方式就是利用链表的方式,具体实现方法在代码注释里都很清楚。

#include<iostream>
#include<string.h>
using namespace std;
const int MAXN = 500;
struct Node{
    int v;
    int have_value;
    Node *left, *right;
};
char s[MAXN];
Node *root;
int failed;

Node* newNode(){
    Node* n = new Node();
    if (n != NULL){
        n->have_value = 0;
        n->left = n->right = NULL;
    }
    return n;
}
//删除树
void remove_tree(Node* u){
    if (u == NULL) return;
    remove_tree(u->left);
    remove_tree(u->right);
    delete(u);
}

//添加节点
void addNode(int n,char *str){
    Node* temp = root;
    int l = strlen(str);
    for (int i = 0; i < l; i++){
        if (str[i] == 'L'){
            if (temp->left == NULL) temp->left = newNode();
            temp = temp->left;
        }
        if (str[i] == 'R'){
            if (temp->right == NULL) temp->right = newNode();
            temp = temp->right;
        }
    }
    if (temp->have_value == 1) failed = 1;
    temp->v = n;
    temp->have_value = 1;
}
//读取
void read_input(){
    int v;
    //删除roof
    root = newNode();                       //新建根节点
    for (;;){
        if (scanf("%s", s) != 1) return;    //输入结束
        if (!strcmp(s, "()")) break;        //读到最后
        sscanf(&s[1], "%d", &v);            //给v附值
        addNode(v, strchr(s,',') + 1);      //建立树
    }
}
Node* n[MAXN];
int bfs(){                                  //广度索搜(用队列的储存方式)
    int  front=0, rear=1;
    n[front] = root;
    while (front<rear)
    {
        Node* u = n[front++];
        if (!u->have_value) return 0;       //先序遍历,先输出父节点
        cout << u->v << " ";
        if (u->left != NULL) n[rear++] = u->left;
        if (u->right != NULL) n[rear++] = u->right;
    }
    return 1;
}

int main(){             //主函数
    failed = 0;
    read_input();
    bfs();
    remove_tree(root);
}
1. 什么是二叉树二叉树是一种树形结构,其中每个节点最多有两个子节点。一个节点的左子节点比该节点小,右子节点比该节点大。二叉树通常用于搜索和排序。 2. 二叉树的遍历方法有哪些? 二叉树的遍历方法包括前序遍历、中序遍历和后序遍历。前序遍历是从根节点开始遍历,先访问根节点,再访问左子树,最后访问右子树。中序遍历是从根节点开始遍历,先访问左子树,再访问根节点,最后访问右子树。后序遍历是从根节点开始遍历,先访问左子树,再访问右子树,最后访问根节点。 3. 二叉树的查找方法有哪些? 二叉树的查找方法包括递归查找和非递归查找。递归查找是从根节点开始查找,如果当前节点的值等于要查找的值,则返回当前节点。如果要查找的值比当前节点小,则继续在左子树中查找;如果要查找的值比当前节点大,则继续在右子树中查找。非递归查找可以使用栈或队列实现,从根节点开始,每次将当前节点的左右子节点入栈/队列,直到找到要查找的值或者栈/队列为空。 4. 二叉树的插入与删除操作如何实现? 二叉树的插入操作是将要插入的节点与当前节点的值进行比较,如果小于当前节点的值,则继续在左子树中插入;如果大于当前节点的值,则继续在右子树中插入。当找到一个空节点时,就将要插入的节点作为该空节点的子节点。删除操作需要分为三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点。删除叶子节点很简单,只需要将其父节点的对应子节点置为空即可。删除只有一个子节点的节点,需要将其子节点替换为该节点的位置。删除有两个子节点的节点,则可以找到该节点的后继节点(即右子树中最小的节点),将其替换为该节点,然后删除后继节点。 5. 什么是平衡二叉树? 平衡二叉树是一种特殊的二叉树,它保证左右子树的高度差不超过1。这种平衡可以确保二叉树的查找、插入和删除操作的时间复杂度都是O(logn)。常见的平衡二叉树包括红黑树和AVL树。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值