HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?
一种思路,使用两个循环,分别计算从开始s到结束e的和,找出最大的数,但是这种解法的时间复杂度为n*n,不建议。
另一种思路,遍历一次,当前的和小于0时抛弃,因为负数不管加什么数,都是变小的,因此重新计算就可以了。
private static int solution(int[] n){
int max=Integer.MIN_VALUE,sum=max;
for(int i=0;i<n.length;i++){
if(sum<0){
sum=0;
}
sum+=n[i];
if(sum>max){
max=sum;
}
}
return max;
}