剑指Offer——连续子数组的最大和

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?

一种思路,使用两个循环,分别计算从开始s到结束e的和,找出最大的数,但是这种解法的时间复杂度为n*n,不建议。

另一种思路,遍历一次,当前的和小于0时抛弃,因为负数不管加什么数,都是变小的,因此重新计算就可以了。

private static int solution(int[] n){
        int max=Integer.MIN_VALUE,sum=max;
        for(int i=0;i<n.length;i++){
            if(sum<0){
                sum=0;
            }
            sum+=n[i];
            if(sum>max){
                max=sum;
            }
        }
        return max;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值