题目描述
在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
我一开始的思路是从左到右,从上到下遍历。
public boolean Find1(int target, int[][] array) {
for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array[i].length; j++) {
if (target == array[i][j])
return true;
}
}
return false;
}
这样的方法时间复杂度为n*n,很费时间。
方法2:因为矩阵是有序的,每一行都是从小到大,可以使用二分法。
public boolean Find(int [][] array,int target) {
for(int i=0;i<array.length;i++){
int low=0;
int high=array[i].length-1;
while(low<=high){
int mid=(low+high)/2;
if(target>array[i][mid])
low=mid+1;
else if(target<array[i][mid])
high=mid-1;
else
return true;
}
}
return false;
}
时间复杂度为nlogn,这种方法不难想到。
方法三:
利用二维数组由上到下,由左到右递增的规律,
那么选取右上角或者左下角的元素a[row][col]与target进行比较,
当target小于元素a[row][col]时,那么target必定在元素a所在行的左边,
即col–;
当target大于元素a[row][col]时,那么target必定在元素a所在列的下边,
即row++;
public boolean Find(int [][] array,int target) {
int row=0;
int col=array[0].length-1;
while(row<=array.length-1&&col>=0){
if(target==array[row][col])
return true;
else if(target>array[row][col])
row++;
else
col--;
}
return false;
}
这种方法比较巧妙,时间复杂度为2n,如果再结合二分法,可以到n+logn