题目
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法
解析:当青蛙到到n级时,有两种跳法,一种是从n-1级跳1级,还有种是n-2跳2级
f(n)=f(n-1)+f(n-2),大家对这个公式是不是很熟悉,对,是斐波那契数列。所以这是一道动态规划的问题。
// 斐波那契数列,只能上1或2级的方法
public int JumpFloor(int target) {
if (target <= 2)
return target;
int[] n = new int[target + 1];
n[1] = 1;
n[2] = 2;
for (int i = 3; i <= target; i++)
n[i] = n[i - 1] + n[i - 2];
return n[target];
}
扩展
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
解析:当青蛙到到n级时,有跳1级,2级,3级…..n级
f(n)=f(n-1)+f(n-2)+f(n-3)……
// 斐波那契数列,只能上n级的方法
public int JumpFloor1(int target) {
if (target <= 2)
return target;
int[] n = new int[target + 1];
n[1] = 1;
n[2] = 2;
for (int i = 3; i <= target; i++){
n[i]=1;
for(int j=0;j<i;j++){
n[i]+=n[j];
}
}
return n[target];
}