HDU - 1087 I Super Jumping! Jumping! Jumping! 题解*

超级跳跳跳游戏:最大得分策略
本文介绍了一种名为'超级跳跳跳'的流行棋类游戏,玩家从起点开始,按照数字递增的方向跳跃,目标是最大化路径上数字的总和。题目要求求解给定棋盘上能达到的最大得分。分析中提到,可以通过计算每个点作为起始点能获得的最大得分来确定最优路径,最后选取这些得分中的最大值作为答案。

题面:

Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.
The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.

输入:

Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.

输出:

For each case, print the maximum according to rules, and one line one case.

翻译:

现在有一种叫做超级跳跳跳的游戏很流行.
期盼上面有N个数字和起点终点(数字不包括起点和终点),起点在最左边,终点在最右边(指地图外面
玩家从起点往右跳,每一步只能跳到比所在的点的数字大的点上,直到到达终点
在这个过程之中,踩到的数字的和最多能有多少?

输入:

有多组输入数据
每一行第一个数字是N,随后跟着N个整数,代表从左到右每个点上的数字
输入0时结束

输出:

对于每一组数据,输出按照规则能够踩到的数字的和的最大值.

题目分析:

对于每一个点i,我们都假设ans[i]是第一步踩在i点上所能得到的最大值.
对于每一个数字大于i而且位置在i后面的点,我们都把他的数字加到ans[i]上
最后在ans[i]中的最大值,便是题目答案

代码:

#include<stdio.h>
#include<memory.h>
long chess[1001], ans[1001], max;
int n;

int main(){
        scanf("%d" ,&n);
        while(n){
                for(long i = 1; i <= n; i++) scanf("%ld", &chess[i]);
                max = 0;
                memset(ans, 0, sizeof(ans));
                for(long i = 1 ;i <= n; i++){
                        ans[i] = chess[i];
                        for(long j = 1; j <= i; j++){
                                if(chess[j] < chess[i] && ans[j] + chess[i] > ans[i]){
                                        ans[i] = chess[i] + ans[j];
                                }
                        }
                }
                for(long i = 1; i <= n; i++)
                        if(max < ans[i])
                                max = ans[i];
                printf("%ld\n", max);
                scanf("%d", &n);
        }
}
潮汐研究作为海洋科学的关键分支,融合了物理海洋学、地理信息系统及水利工程等多领域知识。TMD2.05.zip是一套基于MATLAB环境开发的潮汐专用分析工具集,为科研人员与工程实践者提供系统化的潮汐建模与计算支持。该工具箱通过模块化设计实现了两大核心功能: 在交互界面设计方面,工具箱构建了图形化操作环境,有效降低了非专业用户的操作门槛。通过预设参数输入模块(涵盖地理坐标、时间序列、测站数据等),用户可自主配置模型运行条件。界面集成数据加载、参数调整、可视化呈现及流程控制等标准化组件,将复杂的数值运算过程转化为可交互的操作流程。 在潮汐预测模块中,工具箱整合了谐波分解法与潮流要素解析法等数学模型。这些算法能够解构潮汐观测数据,识别关键影响要素(包括K1、O1、M2等核心分潮),并生成不同时间尺度的潮汐预报。基于这些模型,研究者可精准推算特定海域的潮位变化周期与振幅特征,为海洋工程建设、港湾规划设计及海洋生态研究提供定量依据。 该工具集在实践中的应用方向包括: - **潮汐动力解析**:通过多站点观测数据比对,揭示区域主导潮汐成分的时空分布规律 - **数值模型构建**:基于历史观测序列建立潮汐动力学模型,实现潮汐现象的数字化重构与预测 - **工程影响量化**:在海岸开发项目中评估人工构筑物对自然潮汐节律的扰动效应 - **极端事件模拟**:建立风暴潮与天文潮耦合模型,提升海洋灾害预警的时空精度 工具箱以"TMD"为主程序包,内含完整的函数库与示例脚本。用户部署后可通过MATLAB平台调用相关模块,参照技术文档完成全流程操作。这套工具集将专业计算能力与人性化操作界面有机结合,形成了从数据输入到成果输出的完整研究链条,显著提升了潮汐研究的工程适用性与科研效率。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值