由拉普拉斯变换到传递函数,拉普拉斯变换中的S是个什么鬼?如何给文科生解释傅里叶变换?如何理解s是在复数域的呢?用ln(x)怎么解释,欧拉公式,可以把复数域与自然常数联系

拉普拉斯变换中的S是个什么鬼?

李狗嗨

​​编辑

数学话题下的优秀答主

知乎日报收录

2905 人赞同了该文章

A good way of thinking of where the Laplace transform comes from, and a way which dispels some of its mystery is by thinking of power series.(一个比较好的关于Laplace变换的解释方法是从幂级数(Power Series)入手。)
— —Arthur Mattuck (原MIT数学系主任)

学过控制的都知道拉氏变换(Laplace Transform),其可以将微分方程转化为代数方程进行运算,使得求解大为简化。

但你们是不是也有这样的疑问:拉氏变换中的 � 是怎么来的?皮埃尔-西蒙·拉普拉斯[1]当年为啥就能想出个这样的数学变换公式?

Pierre-Simon Laplace (1749–1827)图片来源:(Wikipedia)

我是自从接触拉氏变换就一直有这样的疑问,直到有一天,看了Arthur Mattuck [2]的微分方程才恍然大悟。更有意思的是,导师有一天也问了这样一个看似无厘头的问题,还好当时有所准备。

Arthur Mattuck

如果学过高等数学,都应该知道:一个幂级数可以写为如下形式:

(1)�(�)=∑�=0∞����

将其展开其实就是: �(�)=�0+�1�1+�2�2+...+����

如果将其中幂级数的系数 �� 看成一组离散的函数,则上式 (1) 也可以写为:

(2)�(�)=∑�=0∞�(�)��

通过把 �(�) 看作一组关于变量 � 的离散函数,式 (2) 相当于描述了函数 �(�) 的构造过程。

输入是离散函数数列 {�0,�1,�2,⋯,��} ,输出则是由多项式构成的函数 �(�) 。即,只要输入一个 {�0,�1,�2,⋯,��} 数列,就可以输出一个函数 �(�) ,其中, � 是输出函数 �(�) 的自变量。

现在,举一个例子,如果取 �(�)=1 ,即 {�0=1,�1=1,�2=1,⋯,��=1} ,那么将得到输出为:

(3)�(�)=1+�+�2+�3+⋯

有人说式 (3) 最后等于 11−� ,但这么说其实不准确,因为并不是对于所有的 � 都成立,只有当它是一个收敛级数时才成立!

而式 (3) 中 � 的收敛域为 �∈(−1,1) ,所以当满足收敛条件时,式 (3) 可以改写为:

(4)�(�)=1+�+�2+�3+⋯=11−�,  −1<�<1

再举一个例子,如果 �(�)=1�! ,即 {�0=1,�1=11!,�2=12!,⋯,��=1�!} ,则有:

(5)�(�)=1+11!�+12!�2+13!�3+⋯=��

在这个例子里,对于任意 � 均成立,即收敛域为 ℂ 。其实式 (5) 就是函数 ��  �=0 处的泰勒展开,或者说是函数 �� 麦克劳林级数

从上面的例子可以看出,取一个定义在正整数上的离散函数,然后进行无穷次的相加操作,结果却能够产生一个连续函数。而且注意其中的离散函数 �� 的变量为 � ,相加得出的却是关于变量 � 的连续函数。

现在,让离散求和变成连续求和,即不再是变量 �=0,1,2,3… ,而是另外定义一个变量 � ,并且有 0≤�<∞ ,即 � 可以为 ,[0,∞) 中的任意数。

如果想用 � 取替代 � ,显然不能再用上面处理离散序列的办法进行求和,而是通过积分操作。即:

(6)�(�)=∫0∞�(�)����

式 (6) 与式 (1) 的区别在于:用 � 取替代了 � ;用积分符号替代了累加符号。

我们可以保留这种形式,但是没有数学家喜欢这样做,而且工程师也很少会这样做。因为在做微积分运算时,没有人希望其中有一个指数的底是 � 之类的积分或微分项,这看起来很头疼。而唯一方便的是取指数的底数为自然常数 � 。只有 � 才是人们喜欢用来积分或微分,因为 �� 在微积分时可以保证自身不变函数,详见:《自然底数e怎么就“自然”了?》和《为什么e^x 的导数是还是其自身?》。

因此,将以 � 为底数的指数替换成以 � 为底数的指数形式:

(7)�(�)=∫0∞�(�)(�ln⁡�)���

既然写出这个积分当然希望其可解,或者说收敛。而只有当 � 是一个小于 1 的数时,即自然指数函数的幂为负数时,该积分才有可能收敛,所以这里要求 �<1 。作为对数,还需要满足 �>0 (对数的详细介绍请见:《为什么说"对数"可以延长天文学家寿命?》),所以这里有 0<�<1 。显然,当 0<�<1 时, ���<0 。

��� 这个变量看起来貌似有点复杂,我们何不再用一个符号去代替它呢?

那么就用 � 吧!

令 �=−��� 或 −�=��� ,因为上面说了 ���<0 ,取 −�=��� 的话, � 就总为正数了,处理正数当然更符合人们的习惯。另外,用 �(�) 代替 �(�) ,这样看上去更像我们熟悉的函数形式。这些替换只是为了修(hao)饰(kan),现将这些替换代入式 (7) 中,得:

(8)�(�)=∫0∞�(�)�−����

通过这种方式,我们得到了Laplace Transform

如果用符号表示这种变换,可以将式 (8) 写为:

(9)�(�)=�[�(�)]

这就是 ������� 变换,当输入一个关于 � 的函数,将得到一个关于 � 的函数。

最后提一句,这里说的是变换,而对于一个算子来说,就不会是这样,变换和算子的最本质区别在于,经过算子运算,变量没有变,比如微分就是一种典型的算子。经过变换则会改变变量的形式,类似的例子可见:《如何给文科生解释傅里叶变换?》。

参考

  1. ^Pierre-Simon Laplace.  https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
  2. ^Differential Equation,Arthur Mattuck

https://zhuanlan.zhihu.com/p/48314585

如何给文科生解释傅里叶变换?

李狗嗨

​​编辑

数学话题下的优秀答主

1795 人赞同了该文章

开个玩笑啦,没有任何瞧不起文科生的意思~

傅里叶变换是有史以来最伟大、最深刻的数学发现之一。但不幸的是,初次见它的公式似乎很难理解其中的内涵。例如,对满足狄里赫利(Dirichlet)条件的周期信号做傅里叶变换可以得到一组傅里叶级数,其可以表示为:

Emmmmm…

数学中所谓的“变换”其实是在变换看待问题的角度,而并非变换问题自身,详见:拉普拉斯变换中的S是个什么鬼?

举个栗子

为了更好地理解“变换”的概念,现在给出一个Better Explained[1]上关于“变换”的简单比喻:

假如有一种饮料叫做:橘子香蕉牛奶冰沙

你很想喝,但是现在你发现市场上卖的简直太贵啦,一杯不算税居然都得10刀。

但有时候贫穷是件好事,因为贫穷会逼着你学会很多生活技能!

显然,我们下一步要做的就是自制橘子香蕉牛奶冰沙了!

但是,就和炒菜一样,即使是同样的食材,给不同的人炒出来的味道也是千差万别。想做出和市场上口感一样的冰沙,最重要的是要知道原材料的种类和比例。那么,这个从一杯橘子香蕉牛奶冰沙中获取原材料和比例的过程也就可以类比于傅里叶变换的过程了。我们姑且称之为“橘子香蕉牛奶冰沙的傅里叶变换”。

为了理清思路,先回答以下几个问题:

1、 “橘子香蕉牛奶冰沙的傅里叶变换”是做什么的?

答:得到一杯水果冰沙后,找出其中包含的各种成分及其性质。

2、怎么做?

答:让冰沙通过某种“过滤器”,以便提取出其中的每种成分。

3、为什么这样做?

答:各个单一的组成成分比冰沙本身更容易分析,比较和修改。

4、如何自制橘子香蕉牛奶冰沙?

答:将过滤得到的各个组成成分按分析所得的比例混合即可。

(图片来源: betterexplained)

就像上面的示意图,如果倒入了9个单位量的水果冰沙。

经过“香蕉过滤器”,得到1个单位量的香蕉;

经过“橘子过滤器”,得到2个单位量的橘子;

经过“牛奶过滤器”,得到3个单位量的牛奶;

经过“冰沙过滤器”,得到3个单位量的冰沙。

这样,我们就获得了制造冰沙的“配方”,只需将各个成分按过滤得到的比例加以混合,就可以得到和市场上一模一样的橘子香蕉牛奶冰沙了!

从消费者的角度,看到的是包含有“香蕉”、“橘子”、“牛奶”和“冰沙”的水果冰沙;而从冰沙的制造者角度来说,关心的是制作冰沙的配方,即成分和比例!

“橘子香蕉牛奶冰沙的傅里叶变换”将我们的视角从消费者转向生产者;从“我有水果冰沙。”转向“水果冰沙是怎么制作的?”。这就是两种不同的角度,而实现这两种角度切换的就是上图中的“过滤器”(也即“变换”)。

在“过滤”(变换)的过程中,各个成分及比例并没有改变。因此,我们可以通过这种变换来逆向还原出配方,这就是“过滤器”(变换)的意义之所在。

傅里叶简介

好,明白了“变换”的意义之后,现在看看正经的傅里叶变换。首先,介绍一下大名鼎鼎的傅里叶[2]

Jean-Baptiste Joseph Fourier 21 March 1768 - 16 May 1830 (图片来源: Wikipedia)

傅里叶的一生很传奇,幼年时父母相继离世,二十多岁毕业后当了数学老师,后又被聘任为巴黎综合理工学院的教授。但他并不是一个安分的人,20岁的血气方刚恰逢当时的法国大革命,他的一些政治行动曾两次险些将其送上断头台,但他也因此获得了拿破仑的器重。

三十岁时傅里叶跟随拿破仑东征,被任命为下埃及总督,并负责为法军的远征部队提供军火。在此期间,这个教过书、造过反、还给拿破仑背过枪的人竟然还向开罗埃及学院递交了几篇有关数学的论文。内容主要是关于他在三角级数方面的贡献。

拿破仑远征军失败后,他回国并于1801年被任命为伊泽尔省格伦诺布尔地方长官。到了1807年,傅里叶在研究中发现了一系列成谐波关系的正弦曲线可以用来表示物体内的温度分布。他还声称,“任何”周期信号都可以用一系列成谐波关系的正弦曲线来表示。

他随后向巴黎科学院呈交了这篇名为《热的传播》的论文,主审这篇文章的四个人中。拉克尔华(F. Lacroix) 、蒙日(G. Monge)和拉普拉斯(P. S. de Laplace)都赞成发表这篇论文,但是拉格朗日(J. L. Lagrange)坚持拒绝傅里叶提出的这一套三角级数理论,因为在他看来,三角级数的适用范围及其有限,不可能把具有例如导数不连续的信号表现出来(当然,拉格朗日也并没有说错,因为在用三角级数近似导数不连续信号时,在不可导点附近会出现“吉布斯现象”,但是可以通过近似使两者的能量差为零)。至于为什么要用正弦(余弦)函数近似,是因为三角级数具有很多特殊的性质,例如,它是线性时不变系统的特征函数,也就是说向该系统输入一个正弦(余弦)函数,输出依然是同频率的正弦(函数),只是幅值和相位改变了(关于幅值、频率、相位后面会说到),这是其他简单信号(方波、三角波等等)不具备的性质。还有就是三角级数自身构成了完备的正交基空间,该性质使其能够在重构信号的过程中既无泄漏也无冗余。在小波变换出现之前,对人们来说,该完备正交基空间亦是可遇不可求的。

由于拉格朗日的强烈反对,导致傅里叶的这篇论文从未发表。在几次尝试让法国学院接受和出版他的论文后,傅里叶着手撰写他作品的另一个版本。1822年,傅里叶将这套理论写在了他的著作:《热的解析理论》之中。这距离他首次提出该理论已经过去了整整15年。

Théorie analytique de la chaleur

虽然他关于三角级数的论述很有意义,但隐藏在这一问题后面的很多基本概念已经被其他科学家们所发现;同时,傅里叶的数学证明也不是很完善。后来于1829年,狄里赫利(Dirichlet)给出了若干精确的条件,在这些条件下,一个周期信号才可以用一个傅里叶级数表示。

因此,傅里叶实际上并没对傅里叶的数学理论做出什么贡献。然而,他确实洞察出级数表示法的潜在威力,并且由于其断言,大大激励和推动了傅里叶级数问题的深入研究。另外,傅里叶在这一问题上的研究成果比他的任何先驱者都大大前进了一步,这指的是他还得出了关于非周期信号的表示——并非成谐波关系的正弦信号的加权和,而是不全成谐波关系的正弦信号的加权积分。

他的发现对19世纪及之后的数学、物理、化学及各个工程领域都产生了深远影响,他是名字被刻在埃菲尔铁塔的七十二位法国科学家与工程师之中。

傅里叶级数的直观表达

前面说到傅里叶认为“任何”周期信号都可以表示为一系列成“谐波关系”的正弦信号的叠加[3]。(这个“谐波关系”后面会提到)

正弦函数无需多言,大家都清楚,但为了直观化表达,这里将正弦(或余弦)信号同时以两种运动形式来表示,分别是:一种是以时间为横轴、位移为纵轴,某一点的往复运动,也就是通常所说的正弦波,或者说是振荡信号;

动图封面

另一种为某一点绕另一点的匀速圆周运动。两种情况综合起来为下图所示。正弦波就是一个圆周运动在一条直线上的投影。

动图封面

正弦信号的两种图形化表示 (图片来源: http://1ucasvb.tumblr.com)

这两种表示方法之间并没有什么本质上的区别,就如同描绘转角大小,一圈可以用角度表示为360°,也可以用弧度表示为2π弧度一样。只是采用了两种不一样的表达形式而已[4],见:一圈为何是360°?

动图封面

弧度定义的演示 (图片来源: http://1ucasvb.tumblr.com)

当我们描述不论是上述的往复运动还是匀速圆周运动,必须且只需三个量即可唯一确定该运动的状态。

若要描述匀速圆周运动,需要知道圆周运动轨迹的大小(即半径或幅度);圆周运动的快慢(即角速度或频率);以及运动的起始位置(即初始相位角),两信号起始位置之间的角度差又称为相位差

(图片来源: betterexplained)

公式表示为:

其中, � 即为正弦波的幅值, ω 为角速度或角频率, φ 为初始相位角, � 为时间, θ 为转角。

那么所有圆周运动(或振荡信号)组合起来得到的位置随时间的变化情况也就是我们最终的信号。这和从原材料得到最终的“橘子香蕉牛奶冰沙”过程类似。

同样,如果反过来,傅里叶级数能够将任何周期信号分解成一个(甚至是由无穷多个元素组成的)简单振荡信号的集合。

为了展示效果和受众,这里尽量少地列公式,仅给出了三种比较常见且简单的信号的分解与合成过程,这三种信号分别是方波、锯齿波和三角波。这三种信号有一个共同点是:它们都是由无数无相位差(假设初试相位角均为零)、且成谐波关系正弦波构成的周期性信号。

01、方波

方波也称为矩形波,但是这种“方方正正”的信号的确可以分解为无限多个正弦信号的组合。下图展示了方波的傅里叶级数的前50项的叠加过程,如果项数继续增加,则最终趋近方波。

动图封面

(图片来源: 1ucasvb)

虽然组成方波的这些信号都是正弦信号,但是这些正弦信号之间还需要满足一定的条件。考虑组成方波的正弦信号,方波可由以下公式表示,其中 � 为奇数:

这里, ω 称为基波频率,而 、、3ω、5ω、�ω 等均为 ω 的整数倍。这些大于基波频率,且是基波频率整数倍的各次分量称为谐波。对于方波,基波的各偶数次谐波的幅值为零。这些谐波成分也就是组成方波的原材料

这里,引入“频域”的概念,如下图。

左边时域-右边频域

最前面红色的近似矩形波就是其后所有蓝色的正弦波线性叠加而成的总和,也就是越来越接近矩形波的那个图形。而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅满足上面的合成公式。每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的偶数谐波。(组成方波的正弦波中,偶数次谐波的幅值均为零)

如果不关心相位或假设所有正弦波之间的相位差为零,按照图示方向看去,时域的方波信号就被投影到了频域。因为前面的方波信号的横轴为时间轴,而在频域,横轴为频率。这样,一组随时间变化的时域正弦信号被表示为了频域的一组离散点。频域每个离散点的横坐标代表一个谐波频率,而其纵坐标则代表该频率的谐波所对应的振动幅度。

动图封面

(图片来源: Wikipedia)

上图表示的是近似方波的函数 �(�) (红色)是六个不同幅度的谐波关系的正弦函数的和。它们的和叫做傅里叶级数。傅里叶变换 �(�) (蓝色),针对幅度与频率进行描绘,显示出6种频率和它们对应的幅度。傅里叶变换将信号由时域变换到频域。

让我们从另一个角度去看待合成的过程。前面说到,正弦波就是一个圆周运动在一条直线上的投影。而频域各个离散点也可以理解为一个始终在绕一个圆旋转的点。这些点转动的速度就对应各个谐波频率,而转动的半径就对应各个谐波的幅值[5]。只要将这些谐波叠加起来,就能最终的信号[6]

动图封面

(图片来源: Wikipedia)

动图封面

(图片来源: https://bl.ocks.org/jinroh/7524988)

02、锯齿波

考虑组成锯齿波的正弦信号,锯齿波可由以下公式表示, 这里 � 为正整数:

下图展示了锯齿波的傅里叶级数的前50项的叠加过程,如果项数继续增加,则最终趋近锯齿波。

动图封面

(图片来源: 1ucasvb)

从圆周运动的角度看叠加过程如下图所示:

动图封面

(图片来源: Wikipedia)

动图封面

(图片来源: https://bl.ocks.org/jinroh/7524988)

03、三角波

对于三角波,与上面的两种类似,下图展示了三角波的傅里叶级数的前25项的叠加过程,如果项数继续增加,则最终趋近三角波。

动图封面

(图片来源: 1ucasvb)

从圆周运动的角度看叠加过程如下图所示:

动图封面

(图片来源: https://bl.ocks.org/jinroh/7524988)

上面那些是简单信号的傅里叶级数近似。最近,我在学习 3Blue1Brown 的动画引擎 manim ,利用里面的素材制作了用傅里叶级数生成任意图形的动画演示,例如 Github 的吉祥物——章鱼猫(Octocat):

动图封面

如果你是初学者,可能会以为这个很难,但是实际上这个动画做起来并没有你们想象的那么难,如果有兴趣的话可以去我的知乎专栏看看,有 3B1B 动画制作的详细教程。

直观の数学 专栏目录519 赞同 · 15 评论文章​编辑

总结

通过上面的例子可以看到,对于满足狄里赫利(Dirichlet)条件的周期信号,可以分解为一组成谐波关系的正弦信号,或者说该周期信号做傅里叶变换可以得到一组傅里叶级数。

对于周期信号,既然知道了其中的各个成分是成谐波关系的,那么频率成分就确定了。所以在不考虑相位差的情况下,问题关键是如何得到这些成谐波关系的正弦信号前的系数(或者说,谐波的幅值,也即是各个成分的大小)。而傅里叶变换的公式恰恰就给了我们解决该问题途径。也就是本文最开始那个公式了。由待分析的周期信号 �(�) ,可以积分得到其中所包含的谐波成分的幅值 �� ,而将这些频率成分全部相加则可以重构出原周期信号。

有人为了方便理解,将傅里叶级数的求解用下式表达:

(图片来源: betterexplained)

注意,这里用复指数信号来表示正弦信号,这也是两种可以互相转化的表达方法,见下图,或见:“上帝公式”真的神到无法触碰?

(图片来源: betterexplained)

写在最后

写这一篇推送的最初目的只是想自己总结一下傅里叶变换的思想。但后来找到了不少好的图片和动态展示,自己也想把这一看似深奥的数学理论用最亲民的方式表达出来,少了很多证明和公式,多了一些直观认识。如有不妥之处欢迎指出,不过,杠精请退散。水平有限,考虑不周,请多包涵。

推荐阅读

直观の数学​zhuanlan.zhihu.com/c_1041689010053341184​编辑

动图封面

参考

  1. ^An Interactive Guide To The Fourier Transform,  https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
  2. ^Joseph Fourier,  https://en.wikipedia.org/wiki/Joseph_Fourier
  3. ^Alan V. Oppenheim, Alan S. Willsky. Signals and systems. Prentice-Hall, 2nd ed, 1997.
  4. ^The additive synthesis, through Fourier series, of square, sawtooth and triangle waves,  http://1ucasvb.tumblr.com/page/2
  5. ^Fourier series,  https://en.wikipedia.org/wiki/Fourier_series
  6. ^Fourier series visualisation with d3,  https://bl.ocks.org/jinroh/7524988

编辑于 2020-03-08 14:40

由拉普拉斯变换到传递函数

小SU智玩科技

爱捣鼓的工科男,伪文青,做有温度的产品。

335 人赞同了该文章

拉普拉斯变换是控制工程常用的数学工具,它除了可以很方便的求解微分方程外,还引出了经典控制理论的数学基础——传递函数

但这个变换对于初学者来说却十分头疼,定义复杂不说,完全看不出有什么含义。

我们先来看下通常教材里面是如何描述拉普拉斯变化的。

设实函数 �(�) ,若满足:

(1)当 �<0 时, �(�)=0 ;

(2)当 �≥0 时,实函数 �(�) 的积分 ∫0∞�(�)�−����在 � 的某一域内收敛。

则定义 �(�) 的拉普拉斯变换为 �(�)=∫0∞�(�)�−����

并记作 �(�)=�[�(�)] ,其中算子 � 是一复数。

看完上面这一段特别高深如坠云端的描述,是不是有一种这个世界特别不真实的错觉?好好的函数 �(�) ,非要整个积分,还要带上一个指数函数,这是炫技么?数学家的脑洞都是怎么开的?

莫慌,这里我先推荐一篇文章,作者对拉普拉斯变换作了深入浅出的讲解,可以加深大家对这个sao操作的理解。

拉普拉斯变换中的S是个什么鬼?2905 赞同 · 140 评论文章​编辑

简单来说,就是叫拉普拉斯的这个人帮我们找到了一种方法,将看起来很费劲的微分算子和积分算子用我们看起来顺眼的符号代替, � 代替 ��� , 1� 代替 ∫�� ,然后复杂的高等函数就变成了初等函数。

有了拉氏变换就会有反变换,怎么把替换掉的 �倒腾回去就是拉氏反变换,这个公式看起来有点复杂 �(�)=12π�∫�−�∞�+�∞�(�)�����,记作 �(�)=�−1[�(�)]。是不是完全记不住?没有关系,要进行反变换查表就可以了,如果还觉得麻烦,那就用计算机求解。(见附表2)

拉普拉斯变换在工程中有哪些实际作用?

(1)求解线性微分方程

线性微分方程 �2���2+5����+6�=6 ,且初始条件 ����|�=0=�(0)=2 ,如何求y的表达式?

第一步:对微分方程两边进行拉普拉斯变换,得到代数方程(利用附表1的叠加定理,微分定理)

�2�(�)−��(0)−����|�=0+5��(�)−5�(0)+6�(�)=6�

第二步:将初始条件代入,求解 �(�)

�(�)=2�2+12�+6�(�2+5�+6)=2�2+12�+6�(�+2)(�+3)=1�−4�+3+5�+2

第三步:求拉普拉斯反变换(依然是查附表2)

�(�)=1−4�−3�+5�−2�(�>0)

(2)引出传递函数

设系统的输入量为 ��(�) ,输出量为 ��(�) ,则它的传递函数是指初始条件为零时,输出量的拉普拉斯变换式 ��(�) 和输入量的拉普拉斯变换式 ��(�) 之比,并记作 �(�) :

�(�)=�[��(�)]�[��(�)]=��(�)��(�)

只要我们能写出系统的微分表达式,就可以求出其传递函数,这样大大方便了我们对控制系统进行数学描述。

例如常见的弹簧-质量-阻尼机械系统(M-B-K系统):

图中K,M,B分别为系统的弹簧刚度,质量和阻尼系数, �(�) 为输入作用力, �(�) 为输出位移。

由牛顿定律可得 ��2���2+�����+��=�(�) ,等式两边进行拉普拉斯变换即可得到系统得到传递函数 �(�)�(�)=1��2+��+�

传递函数在工程建模中经常遇到,需要牢记。

<附表1-拉普拉斯运算定理>

1.叠加定理: �[�1(�)±�2(�)]=�[�1(�)]±�[�2(�)]

2.比例定理:若 �(�)=��1(�) , �[�1(�)]=�1(�) ,则 �[�(�)]=∫0∞��1(�)�−����=��1(�)

3.微分定理: 若 �[�(�)]=�(�) ,则 �[��(�)��]=∫0∞[��(�)��]�−����=��(�)−�(0+)

式子中 �(0+)=�(�)|�=0+

一般情况下, �[�(�)�(�)���]=���(�)−��−1�(0+)−��−2�′(0+)−...−��0+�−2−�0+�−1=���(�)−∑�=1���−��(�−1)(0+)

当初始条件 �(0+)=�′(0+)=...=0 时,则 �[�(�)�(�)���]=���(�)

4.积分定理:若 �[�(�)]=�(�) ,则 �[∫�(�)��]=�(�)�+�−1(0)�,式子中 �−1(0)=∫�(�)�� 在 �=0 处的值

一般情况下, �[∫...∫�(�)(���)]=�(�)��+�−1(0+)��+�−2(0+)��−1+...+�−�(0+)�

若满足 �−1(0+)=�−2(0+)=...=0 ,则 �[∫...∫�(�)(���)]=�(�)��

5.位移定理:若 �[�(�)]=�(�), 则�[�−���(�)]=∫0∞�−���(�)�−��=∫0∞�(�)�−(�+�)�=�(�+�)

6.延迟定理:若 �[�(�)]=�(�) ,则 �[�(�−�)]=�−���(�)

7.卷积定理:若原函数是 �(�) 和 �(�)的 卷积,则 �[�(�)∗�(�)]=�[∫0∞�(�−�)�(�)��]=�(�)�(�)

这里补充说明下何谓卷积?其实卷积就是一种运算,再次借助大神的回答来加深理解。

卷积应用相当广泛,现在很热门的图像处理技术都要用到相关算法。

如何通俗易懂地解释卷积?1.6 万赞同 · 366 评论回答​编辑

8.终值定理:若函数 �(�) 及其一阶导数都是可拉普拉斯变换的,则 �(�) 的终值为 lim�→∞�(�)=lim�→0��(�)

9.初值定理:若函数 �(�) 及其一阶导数都是可拉普拉斯变换的,则 �(�) 的初值为 �(0+)=lim�→0+�(�)=lim�→∞��(�)

<附表2-拉普拉斯变换表>

发布于 2020-06-20 23:37

https://zhuanlan.zhihu.com/p/146769901

有个疑问,如何理解s是在复数域的呢?用ln(x)怎么解释呢?

2019-01-21

​回复​43

已故狗

lnx=a+bi, x=(e^a)(cosb+isinb)

2021-01-28

​回复​12

peng wg

根据欧拉公式,可以把复数域与自然常数联系起来

但是我还是不太明白s是什么😂,这学期学自控,就是不懂这个s是个啥

2019-03-08

​回复​5

善道

原来不是sX而是一个Dx,D是微分算子,它的n次幂就是n次导数,线性微分方程可以写成D多项式的特征方程,而这个线性微分方程有形如e^at的通解,自然多项式方程有复数根,所以a=s=σ+jω,实部贡献幅值,虚部贡献振动频率。

2019-08-03

​回复​13

挥刀斩千愁

善道

你这么一说我就懂了,s=a+bi 用e做底数正好就是教材上A·e^jw形式 其中A=e^a

严重的误导,拉布拉斯变换是在复数域下的,根本不是lnx这样的代换,s是个复变量,计算时应令s=σ+jθ,并利用欧拉公式展开求积分,拉式变换的意义在于将积分运算转换成代数运算,减少了计算量

https://zhuanlan.zhihu.com/p/48314585

https://baike.baidu.com/item/%E6%AC%A7%E6%8B%89%E5%AE%9A%E7%90%86/891345?fr=aladdin 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值