CUDA环境的配置
在很多大数据处理、图像处理等环境下时,串行运算已经满足不了对速度的需求,这时就需要运用并行运算来提高运算的效率。
CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台,也是典型的并行运算所用的工具之一(毕竟NVIDIA是显卡界的老大,听说AMD显卡也开始支持CUDA)。
首先先进行CUDA的程序的安装;
这里笔者用VS2013+CUDA7.5
(1):VS2013下载:http://192.168.155.1/vs2013.2_ult_chs.iso?fid=D04GPsYCSFzUHbUulnA7nVr0cWEA2FpyAQAAAE-FrALxho6idmiI-0*7H9e4VDlz&mid=666&threshold=150&tid=5CD1FA0006303F92EE0D3B68C25F4F70&srcid=119&verno=1
VS010,VS2012都可以建议不要用vs2015,(笔者花了大半天安装2015结果发现2015还不支持CUDA,估计CUDA下一代应该支持VS了吧);
(2):CUDA7.5下载:https://developer.nvidia.com/cuda-downloads,进去后根据自己的系统选择合适的CUDA版本下载(如果是GTX1080可以试着选择CUDA8);
接下来就点击安装
可以选择直接在c盘下安装,也可以在其他目录下;
经过大约一分钟之后
之后按指示安装;
快的话半小时,慢的话要1小时左右,所以十几二十分卡住不动的时候不要轻易Ctrl+Shift+Esc结束进程。
这里要注意如果安装不成功,可能是遇到了驱动的问题(我遇到过,重装了很多次,差点没把系统重装),笔者用NVIDIA图像驱动353.90,可以安装建议也安装PhysX 9·15·0428
等安装好后再打开电脑—右键属性—环境—高级系统设置—环境变量添加:
CUDA_SDK_PATH:
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v7.5
Path:%CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_LIB_PATH%;%CUDA_SDK_BIN_PATH%;
CUDA_SDK_LIB_PATH:%CUDA_SDK_PATH%\common\lib\x64
CUDA_SDK_BIN_PATH:%CUDA_SDK_PATH%\bin\x64
CUDA_LIB_PATH:%CUDA_PATH%\lib\x64
可以打开命令提示符,输入nvcc -V
如果看到
那先恭喜你可以开始CUDA的开发了;
如果你想看一下CUDA的强大,你可以打开安装目录:C:\ProgramData\NVIDIA Corporation\CUDA Samples\v7.5
这是笔者的
可以试着打开
如C:\ProgramData\NVIDIA Corporation\CUDA Samples\v7.5\5_Simulations\nbody,下的
再运行
会看到
很炫的算法,当然在doc下有相关论文
接下来推荐一些学习资料:
学习视频:
http://www.iqiyi.com/v_19rrmjulso.html#curid=289029000_7e1c7846efbc5c1c0801975b53bc7be3 讲得很不错,适合入门
书籍:
《GPU高性能编程CUDA实战》适合入门者,其中有些深的先不用深究
《GPGPU编程技术》:深入了解GPU;
学习社区:
https://cudazone.nvidia.cn/
CUDA ZONE
博客:
http://blog.csdn.net/augusdi/article/details/12833235
入门不错