【编号一】整除的基本性质证明:
若a|b, b|a, 则 a=b 或 a=-b
若a|b, b|c, 则a|c
若a|b, a|c,则对任意整数x,y,恒有a|bx+cy
带余除法(欧几里得除法): 给定a,b,存在唯一 a = bq + r, 0 ≤ r < |b|
【编号二】☆☆☆素数有无穷多个
【编号三】背模板:线性筛素数O(n)
【编号四】辗转相除法的证明
【编号五】背代码2:裴蜀定理与
g
c
d
与
l
c
m
gcd与lcm
gcd与lcm的相关推论证明
裴蜀定理(扩展欧几里得):若a,b不同时为0,则存在整数m,n,使得d = ma+nb。其中,d=(a,b)。
特殊地,若(a,b)=1,则
a
m
+
b
n
=
1
am+bn=1
am+bn=1,反过来,若
a
m
+
b
n
=
1
am+bn=1
am+bn=1,则(a,b)=1。即有
(
a
,
b
)
=
1
⇔
a
m
+
b
n
=
1
(a,b)=1⇔am+bn=1
(a,b)=1⇔am+bn=1
推论
若a,b不同时为0,则存在整数m,n,使得
(
a
,
b
)
=
m
a
+
n
b
(a,b) = ma+nb
(a,b)=ma+nb
①若a|bc, (a,b) = 1, 则a|c
②设p为素数,若p|ab,则p|a或p|b
③若(a,n)=1, (b,n)=1, 则(ab,n)= 1
算术基本定理
【编号六】同余方程的消去律
【编号七】剩余类与逆元
剩余类
逆元
什么是逆元?
充要条件(还不懂)
通过逆元求除法取模
如何求逆元?1.扩欧2.欧拉定理
【编号八】费马小定理以及欧拉定理与BSGS
费马小定理
欧拉定理
BSGS
【编号九】背代码3:中国剩余定理
【编号十】有重复元素全排列
a
n
s
=
n
!
n
1
!
n
2
!
.
.
.
n
k
!
ans=\frac{n!}{n_{1}!n_{2}!...n_{k}!}
ans=n1!n2!...nk!n!
【编号十一】可重复选择组合
【编号十二】单色三角形
【编号十三】求子集的子集总共有多少
【编号十四】几何分布及其期望计算
概念
期望
【编号十五】二项分布
【编号十六】条件概率
【编号十七】全概率公式
【编号十八】期望的线性性
不严格证明
例题
eg1:抛n次硬币,求正面朝上次数的期望
eg2:一场舞会有n对夫妇,现在随机男女配对,问期望有多少对舞伴是原配
eg3:给定一棵树,指定根,有一个机器人,每次在(剩下的树中)等可能随机选择一个结点,砍去以它为根的子树,问机器人期望会砍几次
【编号十九】Miller-Rabin判素数法