数论知识梳理

【编号一】整除的基本性质证明:
若a|b, b|a, 则 a=b 或 a=-b
若a|b, b|c, 则a|c
若a|b, a|c,则对任意整数x,y,恒有a|bx+cy
带余除法(欧几里得除法): 给定a,b,存在唯一 a = bq + r, 0 ≤ r < |b|
【编号二】☆☆☆素数有无穷多个
【编号三】背模板:线性筛素数O(n)
【编号四】辗转相除法的证明
【编号五】背代码2:裴蜀定理与 g c d 与 l c m gcd与lcm gcdlcm的相关推论证明
裴蜀定理(扩展欧几里得):若a,b不同时为0,则存在整数m,n,使得d = ma+nb。其中,d=(a,b)。
特殊地,若(a,b)=1,则 a m + b n = 1 am+bn=1 am+bn=1,反过来,若 a m + b n = 1 am+bn=1 am+bn=1,则(a,b)=1。即有 ( a , b ) = 1 ⇔ a m + b n = 1 (a,b)=1⇔am+bn=1 (a,b)=1am+bn=1
推论
若a,b不同时为0,则存在整数m,n,使得 ( a , b ) = m a + n b (a,b) = ma+nb (a,b)=ma+nb
①若a|bc, (a,b) = 1, 则a|c
②设p为素数,若p|ab,则p|a或p|b
③若(a,n)=1, (b,n)=1, 则(ab,n)= 1
算术基本定理
【编号六】同余方程的消去律
【编号七】剩余类与逆元
剩余类
逆元
什么是逆元?
充要条件(还不懂)
通过逆元求除法取模
如何求逆元?1.扩欧2.欧拉定理
【编号八】费马小定理以及欧拉定理与BSGS
费马小定理
欧拉定理
BSGS
【编号九】背代码3:中国剩余定理
【编号十】有重复元素全排列 a n s = n ! n 1 ! n 2 ! . . . n k ! ans=\frac{n!}{n_{1}!n_{2}!...n_{k}!} ans=n1!n2!...nk!n!
【编号十一】可重复选择组合
【编号十二】单色三角形
【编号十三】求子集的子集总共有多少
【编号十四】几何分布及其期望计算
概念
期望
【编号十五】二项分布
【编号十六】条件概率
【编号十七】全概率公式
【编号十八】期望的线性性
不严格证明
例题

eg1:抛n次硬币,求正面朝上次数的期望
eg2:一场舞会有n对夫妇,现在随机男女配对,问期望有多少对舞伴是原配
eg3:给定一棵树,指定根,有一个机器人,每次在(剩下的树中)等可能随机选择一个结点,砍去以它为根的子树,问机器人期望会砍几次

【编号十九】Miller-Rabin判素数法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值