预训练方法中基于特征的方法和基于微调的方法本质区别在哪里?

本文探讨了在自然语言处理任务中使用预训练模型BERT的两种常见方法:特征提取和微调。特征提取方法利用训练好的BERT模型生成文本特征向量,作为下游任务的输入;而微调方法则在预训练的基础上进一步调整模型参数,使之更适用于具体任务。两种方法各有优势,选择取决于实际应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于特征的方法是将BERT作为一个编码器,将输入的文本处理为特征向量。特征向量作为下游任务的输入,在训练过程中只针对后面的分类模型,BERT的输出仅仅是作为分类模型的输入特征。
特征提取是使用训练好的模型对新的数据生成特征向量,让后将特征作为task-specific模型的输入,训练新的task-specific模型参数。

基于微调的方法是在已经训练好的结构上,在当前任务的数据上进行训练,对部分网络层进行微调,让模型更加适合当前任务。
微调方法能充分利用深度学习神经网络强大的泛化能力,避免了设计新的模型,无需从头开始训练,能达到更快的收敛速度和更好的效果。

二者之间最主要的区别在于原始模型的参数是否会随着新数据的加入而进行调整。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值