236. 二叉树的最近公共祖先
问题描述:传送门
思路:
要想找到二叉树的公共祖先,那就需要从叶子节点回溯到根节点。而后序遍历刚好满足这道题,因为它先处理的一定是叶子节点 。
判断公共祖先的逻辑:
在回溯的过程中,如果发现某节点左子树是节点p,右子树是节点q。
或者左子树是节点q,右子树是节点p。
那么该节点就是节点p和q的最近公共祖先。
所以说,从后序遍历中发现符合该条件的节点,就找到了最近公共节点了。
1、递归
① 确定递归函数的参数和返回值
需要判断是否找到节点p和q,那就需要bool类型的返回值。
还要判断最近公共节点,需要TreeNode * 的返回值。
如果遇到p或q,就把p或q返回;
如果返回值不为空,就说明找到了p或q。
代码如下:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q)
② 确定终止条件
如果找到了空节点,或者遇到了p或q节点,就返回。
if (root == q || root == p || root == NULL)
return root;
③ 确定单层递归的逻辑
在递归时要对返回值做判断,但依然要遍历所有节点。
以前说是遇到某一条边才输出返回值,
到这里就要分情况讨论。
情况1,搜索一条边:
if (递归函数(root->left))
return ;
if (递归函数(root->right))
return ;
情况2,搜索整个树:
left = 递归函数(root->left);
right = 递归函数(root->right);
处理left和right的代码;
如下图,查找节点p=6,q=5。
最后返回7。
但实际上还要遍历根节点右子树(即使已经找到了目标节点),在此图中就是节点14、15、20。
所以,先用left和right取出左子树和右子树的返回值。
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
如果lef和right都不为空,root就是最近公共节点。
如果lef为空,right不为空,返回right,
目标节点是通过right返回的。
如下图:
图中,节点10的左子树返回null,右子树返回目标值7。
节点10就会把右子树的返回值7返回上去。
如果左右节点都为空,可以返回左、右、空三选一。
if (left == NULL && right != NULL)
return right;
else if (left != NULL && right == NULL)
return left;
else { // (left == NULL && right == NULL)
return NULL;
}
完整流程如下:
代码:
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == q || root == p || root == NULL) return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if (left != NULL && right != NULL) return root;
if (left == NULL && right != NULL) return right;
else if (left != NULL && right == NULL) return left;
else { // (left == NULL && right == NULL)
return NULL;
}
}
};
还可以这么写:
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == q || root == p || root == NULL) return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if (left != NULL && right != NULL) return root;
if (left == NULL) return right;
return left;
}
};