leetcode 108 学习笔记(递归、迭代)

108.将有序数组转换为二叉搜索树

问题描述:传送门

在这里插入图片描述

思路:

如果根据数组构造一颗二叉树,本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间。

分割点,就是数组中间位置的节点。
问题来了,如果数组长度为偶数,中间节点有两个,应该取哪一个?

其实取哪个都行,最后形成的平衡二叉搜索树不同而已。

例如:输入:【-10,-3,0,5,9】
如下两棵树,都是这个数组的平衡二叉搜索树:
在这里插入图片描述
所以说,如果要分割的数组长度为偶数的时,中间元素为两个,
取中间左边元素就是树1,取右边元素就是树2。

1、递归

① 确定递归函数的参数和返回值
参数:传入数组,左下表left,右下表right。
返回值:构造好平衡二叉树的值

代码如下:

// 左闭右闭区间[left, right]
TreeNode* traversal(vector<int>& nums, int left, int right) 

② 确定终止条件
因为上面定义了左闭右闭区间,所以当区间left>right的时候,就是空节点了。
代码如下:

if (left > right) 
	return nullptr;

③ 确定单层递归的逻辑
取数组中间元素,可以用int mid = left + ((right - left) / 2);防止数组越界。

然后以中间位置的元素构造节点,

TreeNode* root = new TreeNode(nums[mid]);

接着划分区间,root的左孩子接住下一层左区间构造的节点,右孩子接住下一层右区间构造的节点。

最后返回root节点,单层递归整体代码如下:

int mid = left + ((right - left) / 2); 
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;

int mid = left + ((right - left) / 2); 的意思是如果数组长度是偶数,中间位置有两个元素,取左边的。

因为是左闭右闭区间,所以传入的left和right是0和nums.size()-1。
代码如下:

class Solution {
private:
    TreeNode* traversal(vector<int>& nums, int left, int right) {
        if (left > right) return nullptr;
        int mid = left + ((right - left) / 2); 
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = traversal(nums, left, mid - 1);
        root->right = traversal(nums, mid + 1, right);
        return root;
    }
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        TreeNode* root = traversal(nums, 0, nums.size() - 1);
        return root;
    }
};

2、迭代
通过三个队列模拟,
一个队列放遍历的节点,
一个队列放左区间下表,
一个队列放右区间下表。
模拟不断分割:

class Solution {
public:
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        if (nums.size() == 0) return nullptr;

        TreeNode* root = new TreeNode(0);   // 初始根节点
        queue<TreeNode*> nodeQue;           // 放遍历的节点
        queue<int> leftQue;                 // 保存左区间下表
        queue<int> rightQue;                // 保存右区间下表
        nodeQue.push(root);                 // 根节点入队列
        leftQue.push(0);                    // 0为左区间下表初始位置
        rightQue.push(nums.size() - 1);     // nums.size() - 1为右区间下表初始位置

        while (!nodeQue.empty()) {
            TreeNode* curNode = nodeQue.front();
            nodeQue.pop();
            int left = leftQue.front(); leftQue.pop();
            int right = rightQue.front(); rightQue.pop();
            int mid = left + ((right - left) / 2);

            curNode->val = nums[mid];       // 将mid对应的元素给中间节点

            if (left <= mid - 1) {          // 处理左区间
                curNode->left = new TreeNode(0);
                nodeQue.push(curNode->left);
                leftQue.push(left);
                rightQue.push(mid - 1);
            }

            if (right >= mid + 1) {         // 处理右区间
                curNode->right = new TreeNode(0);
                nodeQue.push(curNode->right);
                leftQue.push(mid + 1);
                rightQue.push(right);
            }
        }
        return root;
    }
};

现在是不是思路很清晰。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓梦林

都看到这里了,支持一下作者呗~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值