108.将有序数组转换为二叉搜索树
问题描述:传送门
思路:
如果根据数组构造一颗二叉树,本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间。
分割点,就是数组中间位置的节点。
问题来了,如果数组长度为偶数,中间节点有两个,应该取哪一个?
其实取哪个都行,最后形成的平衡二叉搜索树不同而已。
例如:输入:【-10,-3,0,5,9】
如下两棵树,都是这个数组的平衡二叉搜索树:
所以说,如果要分割的数组长度为偶数的时,中间元素为两个,
取中间左边元素就是树1,取右边元素就是树2。
1、递归
① 确定递归函数的参数和返回值
参数:传入数组,左下表left,右下表right。
返回值:构造好平衡二叉树的值
代码如下:
// 左闭右闭区间[left, right]
TreeNode* traversal(vector<int>& nums, int left, int right)
② 确定终止条件
因为上面定义了左闭右闭区间,所以当区间left>right的时候,就是空节点了。
代码如下:
if (left > right)
return nullptr;
③ 确定单层递归的逻辑
取数组中间元素,可以用int mid = left + ((right - left) / 2);
防止数组越界。
然后以中间位置的元素构造节点,
TreeNode* root = new TreeNode(nums[mid]);
接着划分区间,root的左孩子接住下一层左区间构造的节点,右孩子接住下一层右区间构造的节点。
最后返回root节点,单层递归整体代码如下:
int mid = left + ((right - left) / 2);
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
int mid = left + ((right - left) / 2);
的意思是如果数组长度是偶数,中间位置有两个元素,取左边的。
因为是左闭右闭区间,所以传入的left和right是0和nums.size()-1。
代码如下:
class Solution {
private:
TreeNode* traversal(vector<int>& nums, int left, int right) {
if (left > right) return nullptr;
int mid = left + ((right - left) / 2);
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
TreeNode* root = traversal(nums, 0, nums.size() - 1);
return root;
}
};
2、迭代
通过三个队列模拟,
一个队列放遍历的节点,
一个队列放左区间下表,
一个队列放右区间下表。
模拟不断分割:
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
if (nums.size() == 0) return nullptr;
TreeNode* root = new TreeNode(0); // 初始根节点
queue<TreeNode*> nodeQue; // 放遍历的节点
queue<int> leftQue; // 保存左区间下表
queue<int> rightQue; // 保存右区间下表
nodeQue.push(root); // 根节点入队列
leftQue.push(0); // 0为左区间下表初始位置
rightQue.push(nums.size() - 1); // nums.size() - 1为右区间下表初始位置
while (!nodeQue.empty()) {
TreeNode* curNode = nodeQue.front();
nodeQue.pop();
int left = leftQue.front(); leftQue.pop();
int right = rightQue.front(); rightQue.pop();
int mid = left + ((right - left) / 2);
curNode->val = nums[mid]; // 将mid对应的元素给中间节点
if (left <= mid - 1) { // 处理左区间
curNode->left = new TreeNode(0);
nodeQue.push(curNode->left);
leftQue.push(left);
rightQue.push(mid - 1);
}
if (right >= mid + 1) { // 处理右区间
curNode->right = new TreeNode(0);
nodeQue.push(curNode->right);
leftQue.push(mid + 1);
rightQue.push(right);
}
}
return root;
}
};
现在是不是思路很清晰。