方法接口:
type BinTreeMethods interface {
Insert(data int)
insertRec(root *Node, data int)
InOrderTraversal(root *Node)//中序遍历
PreOrderTraversal(root *Node)//先序遍历
PostOrderTraversal(root *Node)//后序遍历
LevelOrderTraversal(root *Node)//层次遍历
}
全部代码:
package main
import (
"container/list"
"fmt"
)
// 定义二叉树节点结构
type Node struct {
Data int
Left *Node
Right *Node
}
// BinTreeMethods 定义二叉树的方法
type BinTreeMethods interface {
Insert(data int)
insertRec(root *Node, data int)
InOrderTraversal(root *Node)
PreOrderTraversal(root *Node)
PostOrderTraversal(root *Node)
LevelOrderTraversal(root *Node)
}
// 二叉树结构
type BinaryTree struct {
Root *Node
}
// 插入节点
func (t *BinaryTree) Insert(data int) {
if t.Root == nil {
t.Root = &Node{Data: data, Left: nil, Right: nil}
} else {
t.insertRec(t.Root, data)
}
}
func (t *BinaryTree) insertRec(root *Node, data int) {
if data < root.Data {
if root.Left == nil {
root.Left = &Node{Data: data, Left: nil, Right: nil}
} else {
t.insertRec(root.Left, data)
}
} else {
if root.Right == nil {
root.Right = &Node{Data: data, Left: nil, Right: nil}
} else {
t.insertRec(root.Right, data)
}
}
}
// 中序遍历
func (t *BinaryTree) InOrderTraversal(root *Node) {
if root != nil {
t.InOrderTraversal(root.Left)
fmt.Printf("%d ", root.Data)
t.InOrderTraversal(root.Right)
}
}
// 先序遍历
func (t *BinaryTree) PreOrderTraversal(root *Node) {
if root != nil {
fmt.Printf("%d ", root.Data)
t.PreOrderTraversal(root.Left)
t.PreOrderTraversal(root.Right)
}
}
// 后序遍历
func (t *BinaryTree) PostOrderTraversal(root *Node) {
if root != nil {
t.PostOrderTraversal(root.Left)
t.PostOrderTraversal(root.Right)
fmt.Printf("%d ", root.Data)
}
}
// 层次遍历
func (t *BinaryTree) LevelOrderTraversal(root *Node) {
if root == nil {
return
}
// 创建一个空队列。
queue := list.New()
// 将根节点入队。
queue.PushBack(root)
// 循环执行以下步骤直到队列为空:
for queue.Len() > 0 {
// 出队当前节点。
node := queue.Front().Value.(*Node)
queue.Remove(queue.Front())
// 处理当前节点(例如,打印节点的值)。
fmt.Printf("%d ", node.Data)
// 将当前节点的左子节点入队(如果存在)。
if node.Left != nil {
queue.PushBack(node.Left)
}
// 将当前节点的右子节点入队(如果存在)。
if node.Right != nil {
queue.PushBack(node.Right)
}
}
}
func main() {
var tree BinTreeMethods
tree = &BinaryTree{}
// 插入节点
tree.Insert(5)
tree.Insert(3)
tree.Insert(7)
tree.Insert(1)
tree.Insert(4)
// 中序遍历
fmt.Println("InOrder Traversal:")
tree.InOrderTraversal(tree.(*BinaryTree).Root)
fmt.Println()
// 先序遍历
fmt.Println("PreOrder Traversal:")
tree.PreOrderTraversal(tree.(*BinaryTree).Root)
fmt.Println()
// 后序遍历
fmt.Println("PostOrder Traversal:")
tree.PostOrderTraversal(tree.(*BinaryTree).Root)
fmt.Println()
// 层次遍历
fmt.Println("LevelOrder Traversal:")
tree.LevelOrderTraversal(tree.(*BinaryTree).Root)
fmt.Println()
}
笔记:
由二叉树的先序序列和中序序列可以唯一地确定一棵二叉树
在先序遍历序列中,第一个结点一定是二叉树的根结点;而在中序遍历中,根结点必然将中序序列分割成两个子序列,前一个子序列是根结点的左子树的中序序列,后一个子序列是根结点的右子树的中序序列。
根据这两个子序列,在先序序列中找到对应的左子序列和右子序列。
在先序序列中,左子序列的第一个结点是左子树的根结点,右子序列的第一个结点是右子树的根结点。
如此递归地进行下去,便能唯一地确定这棵二叉树。
同理,由二叉树的后序序列和中序序列也可以唯一地确定一棵二叉树。
因为后序序列的最后一个结点就如同先序序列的第一个结点,可以将中序序列分割成两个子序列,然后采用类似的方法递归地进行划分,进而得到一棵二叉树。
由二叉树的层序序列和中序序列也可以唯一地确定一棵二叉树,需要注意的是,若只知道二叉树的先序序列和后序序列,则无法唯一确定一棵二叉树。