本讲解以背包问题举例
一、介绍
-
动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
-
动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
-
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
-
动态规划可以通过填表的方式来逐步推进,得到最优解.
二、背包问题
1.问题
有一个背包,容量为4磅
现有如下物品
- 要求达到的目标为装入的背包的总价值最大,并且重量不超出
- 要求装入的物品不能重复
2.思路分析
分析
- 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限件可用)
- 这里的问题属于01背包,即每个物品最多放一个。而无限背包可以转化为01背包。
步骤
- 每次遍历到的第i个物品,根据weight[i]和price[i]来确定是否需要将该物品放入背包中。
- price[i][0]=price[0][j]=0; 表示 填入表 第一行和第一列是0
- 当weight[i]> j 时:price[i][j]=price[i-1][j] // 当准备加入新增的商品的容量大于 当前背包的容量时,就直接使用上一个单元格的装入策略
- 当j>=weight[i]时: price[i][j]=max{price[i-1][j], price[i]+price[i-1][j-weight[i]]}
// 当 准备加入的新增的商品的容量小于等于当前背包的容量,
// 装入的方式: -
- price[i-1][j]: 就是上一个单元格的装入的最大值
price[i] : 表示当前商品的价值
price[i-1][j-weight[i]] : 装入i-1商品,到剩余空间j-w[i]的最大值
当j>=weight[i]时: price[i][j]=max{price[i-1][j], price[i]+price[i-1][j-weight[i]]} :
- price[i-1][j]: 就是上一个单元格的装入的最大值
3.代码实现
public class KnapsackProblemDemo {
public static void main(String[] args) {
//物品的重量
int[] weight = {1, 4, 3};
//物品的价格
int[] price = {1500, 3000, 2000};
//背包的容量
int capacity = 4;
KnapsackProblem knapsackProblem = new KnapsackProblem(weight,price,capacity);
//显示最佳装配的商品下标
knapsackProblem.showProduct();
}
}
class KnapsackProblem{
//物品的重量
int[] weight = {1, 4, 3};
//物品的价格
int[] price = {1500, 3000, 2000};
//背包的容量
int capacity = 4;
//物品的个数
int number;
//创建二维数组
//dataArray[i][j] 表示在前i个物品中能够装入容量为j的背包中的最大价值
int[][] dataArray;
//记录放入的商品情况
int[][] product;
public KnapsackProblem(int[] weight, int[] price, int capacity) {
if(weight.length != price.length){
System.out.println("物品重量与价值数量不匹配!");
return;
}
this.weight = weight;
this.price = price;
this.capacity = capacity;
this.number = weight.length;
this.dataArray = new int[number + 1][capacity + 1];
this.product = new int[number + 1][capacity + 1];
init();
run();
}
/**
* 输出数据表
*/
public void showDataTable(){
//输出看看dataArray
for (int i = 0; i < dataArray.length; i++) {
for (int j = 0; j < dataArray[i].length; j++) {
System.out.print(dataArray[i][j] + "\t");
}
System.out.println();
}
}
/**
* 初始化状态
*/
private void init(){
//初始化第一行和第一列,不赋默认值则为0
//将第一列设置为0
for (int i = 0; i < dataArray.length; i++) {
dataArray[i][0] = 0;
}
//第一行设为0
for (int i = 0; i < dataArray[0].length; i++) {
dataArray[0][i] = 0;
}
}
/**
* 进行处理
*/
private void run(){
//从1开始是为了跳过第一行和第一列
for (int i = 1; i < dataArray.length; i++) {
for (int j = 1; j < dataArray[0].length; j++) {
//
if (weight[i - 1] > j) {
dataArray[i][j] = dataArray[i - 1][j];
} else {
if (dataArray[i - 1][j] < price[i - 1] + dataArray[i - 1][j - weight[i - 1]]) {
dataArray[i][j] = price[i - 1] + dataArray[i - 1][j - weight[i - 1]];
//将当前物品情况记录到path
product[i][j] = 1;
} else {
dataArray[i][j] = dataArray[i - 1][j];
}
}
}
}
}
public void showProduct(){
//行的最大下标
int rowMax = product.length - 1;
//列的最大下标
int colMax = product[0].length - 1;
while (rowMax > 0 && colMax > 0) {
if (product[rowMax][colMax] == 1) {
System.out.printf("第 %d 个商品\n", rowMax);
colMax -= weight[rowMax - 1];
}
rowMax--;
}
}
}