判断图的连通子图个数

题目要求

给定一个具有n个顶点、m条边的无向图G,假设项点的编号为1-n。基于深度优先搜索算法,编写程序
求无向图G连通子图的个数。
输入格式:
第一行两个整数n, m,分别表示图G的顶点数和边的数量。
下面m行的每-行有两个整数a和b,分别表示顶点a和顶点b有一条边相连。
输出格式:
输出一个整数,表示图G中连通子图的数量。
输入样例:
5 3
1 2
1 3
4 5
输出样例:
2

思路

由于图的深度优先遍历算法对n个节点调用之前会判断该节点是否遍历过,如果已遍历就跳过,否则调用DFS算法,所以DFS算法的调用次数就是图中联通子图的个数。

代码实现

#include <stdio.h>
#define MAXNUM 1000
int Group[MAXNUM];			//记录图中节点是否被访问过
int dist[MAXNUM][MAXNUM];	//通过邻接矩阵保存图
void DFS(int i, int n);
int main()
{
	int n, m, p, q, k = 0;
	for (int i = 0; i < MAXNUM; i++)
	{
		for (int j = 0; j < MAXNUM; j++)
			dist[i][j] = 0;				//初始化邻接矩阵,初始值为0
		Group[i] = 0;					//同上
	}
	scanf("%d%d", &n, &m);			//获取图的节点数n,和边数m
	for (int i = 0; i < m; i++)
	{
		scanf("%d%d", &p, &q);
		dist[p-1][q-1] = 1;			//如果节点1和节3相连 则另dist[1][3]和dist[3][1]的值为1
		dist[q-1][p-1] = 1;
	}
	for (int i = 0; i < n; i++)
	{
		if (Group[i] != 1)
		{
			DFS(i, n);
			k++;				//执行一次DFS就是k的值自增1,
		}
	}
	printf("%d", k);
	system("pause");
	return 0;
}
void DFS(int i,int n)
{
	Group[i] = 1;
	for (int j = 0; j < n; j++)
	{
		if (dist[i][j] == 1)
			if (Group[j] != 1)
				DFS(j, n);
	}
}
  • 10
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
在C++中,判断一个是否为另一个的完全子图涉及到的遍历和比较。下面是一个简化的概述步骤: ### 完全子图的概念 一个 G 的子图 H 被称为完全子图当它包含 G 中的所有顶点,并且连接每个对的边在 G 中也存在。 ### C++ 实现步骤 为了判断一个是否是另一个的完全子图,可以按照以下步骤编写程序: #### 步骤 1: 的表示 通常我们用邻接矩阵或邻接表来表示。 ```cpp // 使用邻接矩阵表示 bool isCompleteSubgraph(int mainGraph[][V], int subGraph[][V], int V) { ``` #### 步骤 2: 遍历主并检查所有顶点是否存在子图中 接下来我们需要检查主中的每一对顶点是否有边存在于子图中。 ```cpp for (int i = 0; i < V; i++) { for (int j = i + 1; j < V; j++) { // 检查主中(i,j)之间的边是否在子图中也存在 if ((mainGraph[i][j] && !subGraph[i][j])) { return false; } } } ``` 这里假设 `mainGraph` 和 `subGraph` 分别代表主子图的邻接矩阵。如果在遍历过程中发现任何一对在主中相邻但在子图中却不存在,则可以直接返回 `false` 表示该子图不是主的完全子图。 #### 步骤 3: 确保所有顶点都在子图中 最后,需要确保子图包含了主的所有顶点。 ```cpp if (!isAllVerticesPresent(mainGraph, V, subGraph)) { return false; } ``` 其中 `isAllVerticesPresent()` 函数用于检查所有主的顶点是否都在子图中。这可以通过遍历主的每个顶点并在子图中查找对应的顶点来完成。 #### 完整函数实现 完整版本的函数可能如下所示: ```cpp #include <iostream> using namespace std; bool isCompleteSubgraph(int mainGraph[][V], int subGraph[][V], int V) { for (int i = 0; i < V; i++) { for (int j = i + 1; j < V; j++) { if ((mainGraph[i][j] && !subGraph[i][j])) { return false; } } } bool allVerticesPresent = true; for (int i = 0; i < V; i++) { bool found = false; for (int j = 0; j < V; j++) { if (mainGraph[i][j]) { found = true; break; } } if (!found) { allVerticesPresent = false; break; } } return allVerticesPresent; } // 示例用法 int main() { int V = 4; // 假设有4个顶点 int mainGraph[V][V] = {{0, 1, 1, 0}, {1, 0, 1, 1}, {1, 1, 0, 1}, {0, 1, 1, 0}}; int subGraph[V][V] = {{0, 1, 0}, {1, 0, 1}, {0, 1, 0}}; cout << "Is complete subgraph? " << isCompleteSubgraph(mainGraph, subGraph, V); return 0; } ``` ### 相关问题: 1. **如何优化这个算法以减少不必要的计算?** 可以通过提前检测子图是否包含某个特定顶点来减少不必要的遍历次数。例如,在检查两个顶点之间是否连通之前,先确认它们都在子图中。 2. **在实际应用中遇到的常见错误是什么?** 常见错误包括误操作二维数组、边界条件处理不当以及数据类型混淆等。确保输入和输出的维度一致是非常重要的。 3. **此算法适用于无向还是有向?** 这种基于邻接矩阵的方法适用于无向。对于有向,通常需要使用邻接列表或其他更适合表示有向边的数据结构
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

举个锤子²³³³

有钱的捧个钱场,没钱的借去

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值