时间复杂度

时间复杂度

一、时间复杂度的定义 

       一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度

定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 ,则T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是最大上界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。
“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

 

二、时间复杂度计算步骤 

1. 计算出基本操作的执行次数T(n) 

  基本操作即算法中的每条语句(以;号作为分割),语句的执行次数也叫做语句的频度。在做算法分析时,一般默认为考虑最坏的情况。

2. 计算出T(n)的数量级  

求T(n)的数量级,只要将T(n)进行如下一些操作:
  忽略常量、低次幂和最高次幂的系数。
  令f(n)=T(n)的数量级。

3. 用大O来表示时间复杂度 

int num1, num2;
for(int i=0; i<n; i++) 
{
    num1 += 1;
    for(int j=1; j<=n; j*=2) 
    {
        num2 += num1;
    }
} 

  当n趋近于无穷大时,如果lim(T(n)/f(n))的值为不等于0的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n))。

 

三、时间复杂度计算举例

正常计算的计算步骤


分析:

语句int num1, num2;的频度为1;

语句i=0;的频度为1;

语句i<n; i++; num1+=1; j=1; 的频度为n;

语句j<=n; j*=2; num2+=num1;的频度为n*log2n;

T(n) = 2 + 4n + 3n*log2n

忽略掉T(n)中的常量、低次幂和最高次幂的系数。
f(n) = n*log2n

 

lim(T(n)/f(n)) = (2+4n+3n*log2n) / (n*log2n) = 2*(1/n)*(1/log2n) + 4*(1/log2n) + 3
当n趋向于无穷大,1/n趋向于0,1/log2n趋向于0
所以极限等于3。
T(n) = O(n*log2n)


简化的计算步骤 
再来分析一下,可以看出,决定算法复杂度的是执行次数最多的语句,这里是num2 += num1,一般也是最内循环的语句。
并且,通常将求解极限是否为常量也省略掉?
于是,
以上步骤可以简化为: 

1. 找到执行次数最多的语句 
2. 计算语句执行次数的数量级
3. 用大O来表示结果
 

继续以上述算法为例,进行分析:

执行次数最多的语句为num2 += num1

T(n) = n*log2n
f(n) = n*log2n

// lim(T(n)/f(n)) = 1
T(n) = O(n*log2n)

-------------------------------------------------------------------------------
一些补充说明 
最坏时间复杂度 
  算法的时间复杂度不仅与语句频度有关,还与问题规模及输入实例中各元素的取值有关。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这就保证了算法的运行时间不会比任何更长。

求数量级
 
即求对数值(log),默认底数为10,简单来说就是“一个数用标准科学计数法表示后,10的指数”。例如,5000=5x10 3 (log5000=3) ,数量级为3。另外,一个未知数的数量级为其最接近的数量级,即最大可能的数量级。

求极限的技巧
 
要利用好1/n。当n趋于无穷大时,1/n趋向于0 

------------------------------------------------------------------------
一些规则(引自:时间复杂度计算 ) 
1) 加法规则 
T(n,m) = T1(n) + T2(n) = O (max ( f(n), g(m) )

2)
乘法规则 
T(n,m) = T1(n) * T2(m) = O (f(n) * g(m))

3)
一个特例(问题规模为常量的时间复杂度) 
在大O表示法里面有一个特例,如果T1(n) = O(c), c是一个与n无关的任意常数,T2(n) = O ( f(n) ) 则有
T(n) = T1(n) * T2(n) = O ( c*f(n) ) = O( f(n) )
也就是说,在大O表示法中,任何非0正常数都属于同一数量级,记为O(1)。

4) 一个经验规则
 
复杂度与时间效率的关系:
c < log2n < n < n*log2n < n^2 < n^3 < 2^n < 3^n < n! (c是一个常量)
|------------------|-------------------|-------------|
   较好            一般        较差
其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n*log2n,那么这个算法时间效率比较高 ,如果是 2n , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

 

理解补充
1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。

在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n),求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。
3.常见的时间复杂度
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),  对数阶O(log2n),  线性阶O(n),  线性对数阶O(nlog2n),  平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。
其中,
1.  O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
2.O(2^n),指数阶时间复杂度,该种不实用。
3.对数阶O(log2n),   线性对数阶O(nlog2n),除了常数阶以外,该种效率最高。
例:算法:
  for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
          for(k=1;k<=n;++k)
              c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ];     
              //该步骤属于基本操作执行次数:n^3
}
  }
       则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级;
       则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c;
       则该算法的 时间复杂度:T(n)=O(n^3)。

 

四、时间复杂度各种情况分析

1.并列循环的复杂度分析 

将各个嵌套循环的时间复杂度相加。
例如:
  for (i=1; i<=n; i++)
      x++;
  for (i=1; i<=n; i++)
      for (j=1; j<=n; j++)
          x++;
解:
第一个for循环
T(n) = n
f(n) = n
时间复杂度为Ο(n)

第二个for循环
T(n) = n^2
f(n) = n^2
时间复杂度为Ο(n2)
整个算法的时间复杂度为Ο(n+n2) = Ο(n2)。


2.函数调用的复杂度分析 

例如:
public void printsum(int count){
    int sum = 1;
    for(int i= 0; i<n; i++){
       sum += i;
    }   
    System.out.print(sum);
}
分析:
记住,只有可运行的语句才会增加时间复杂度,因此,上面方法里的内容除了循环之外,其余的可运行语句的复杂度都是O(1)。
所以printsum的时间复杂度 = for的O(n)+O(1) = 忽略常量 = O(n)。

这里其实可以运用公式 num = n*(n+1)/2,对算法进行优化,改为:
public void printsum(int count){
    int sum = 1;
    sum = count * (count+1)/2;   
    System.out.print(sum);
}
这样算法的时间复杂度将由原来的O(n)降为O(1),大大地提高了算法的性能。 


3.混合情况(多个方法调用与循环)的复杂度分析 

例如:
public void suixiangMethod(int n){
    printsum(n);//1.1
    for(int i= 0; i<n; i++){
       printsum(n); //1.2
    }
    for(int i= 0; i<n; i++){
       for(int k=0; k
        System.out.print(i,k); //1.3
      }
  }
suixiangMethod 方法的时间复杂度需要计算方法体的各个成员的复杂度。
也就是1.1+1.2+1.3 = O(1)+O(n)+O(n2) ----> 忽略常数 和 非主要项 == O(n2)

-----------------------------------------------------------------------

更多的例子 

O(1) 
    交换i和j的内容
    temp=i;
    i=j;
    j=temp;                    
    以上三条单个语句的频度为1,该程序段的执行时间是一个与问题规模n无关  

的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

 

O(n^2) 

sum=0;       /* 执行次数1 */
for(i=1;i<=n;i++)      
   for(j=1;j<=n;j++)
 
   sum++;       /* 执行次数n2 */
解:T(n) = 1 + n2 = O(n2)
   for (i=1;i<n;i++)
   {
 
       y=y+1;        ①   
       for (j=0;j<=(2*n);j++)    
          x++;        ②      
   }         
解:语句1的频度是n-1
  语句2的频度是(n-1)*(2n+1) = 2n2-n-1
   T(n) = 2n2-n-1+(n-1) = 2n2-2
   f(n) = n2
   lim(T(n)/f(n)) = 2 + 2*(1/n2) = 2
   T(n) = O(n2).

 

O(n)                                  
         O(n3)
 
          for(i=0;i<n;i++)
          { 
 
           for(j=0;j<i;j++)  
           {
            for(k=0;k<j;k++)
            x=x+2; 
 
           }
          }
          
解:当i=m, j=k的时候,内层循环的次数为k当i=m时, j 可以取

0,1,...,m-1 ,  所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i

从0取到n, 则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/2次

T(n) = n(n+1)(n-1)/2 = (n^3-n)/2  

f(n) = n^3

所以时间复杂度为O(n^3)。

 

五、时间复杂度常用结论

访问数组中的元素是常数时间操作,或说O(1)操作。一个算法如 果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(log n)时间。用strcmp比较两个具有n个字符的串需要O(n)时间。常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对 元素相乘并加到一起,所有元素的个数是n^2。
    指数时间算法通常来源于需要求出所有可能结果。例如,n个元 素的集合共有2n个子集,所以要求出所有子集的算法将是O(2^n)的。指数算法一般说来是太复杂了,除非n的值非常小,因为,在 这个问题中增加一个元素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的“巡回售货员问题” ),到目前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果的算法替代之。

 

六、常用排序算法的时间复杂度

 

https://img-blog.csdn.net/20130920172327687?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvem9sYWxhZA==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值