学习笔记 - 校赛G题Writeup / Euler筛法应用

本文详细介绍了如何使用Euler筛法解决校赛G题,涉及积性函数、算数基本定理等概念。通过Euler筛求素数和素数的整数次幂的因子和,结合快速幂和乘法逆元,实现求解复杂数的积性函数问题。同时,讨论了在实现过程中遇到的内存限制和理解难点。
摘要由CSDN通过智能技术生成


前言

一部机, 一个人, 一道题目磨一天, 8 tries 总算让我把这题给做出来了, 在此对这题涉及的知识点进行总结.

一、题面

令f(n) 等于 n 的所有正因子的和并给出正整数n, k满足 1 ≤ n , k ≤ 1 0 7 1 \leq n, k \leq 10 ^ 7 1n,k107
要求求出
∑ i = 1 n f ( i k ) m o d    1 0 9 + 7 \sum_{i=1}^nf(i^k) \mod 10^9+7 i=1nf(ik)mod109+7

并输出

二、思路

1.积性函数

积性函数的定义:

  1. 若函数满足任意两个互质的整数a, b均有f(ab) = f(a) * f(b)时, 函数为积性函数
  2. 若函数满足任意两个整数均有f(ab) = f(a) * f(b)时, 函数为完全积性函数

常用的积性函数有:

  1. φ(n) - 欧拉函数 1
  2. d(n) - 正整数的因子个数
  3. σ(n) - 正整数的所有正因子的k次幂之和
  4. 等等…

由此不难看出f(x)为积性函数, 又因为当两个正整数a,b互质时ak亦与bk互质, 则不妨令
g ( i ) = f ( i k ) g(i) = f(i^k) g(i)=f(ik)
不难得出

当 i 为素数或素数的整数次幂时, 设
i = p e i = p^{e} i=pe
则有
g ( i ) = f ( i k ) = 1 + p + p 2 + . . . + p e k = p e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值