Failure-informed adaptive sampling for PINNs

Failure-informed adaptive sampling for PINNs

Failure-informed PINNs

首先,作者定义了一个limit-state function (LSF) g ( x ) : Ω → R g(\mathbf{x}):\Omega\to\mathbb{R} g(x):ΩR ,形式如下:
g ( x ) = Q ( x ) − ϵ r . g(\mathbf{x})=\mathcal{Q}(\mathbf{x})-\epsilon_r. g(x)=Q(x)ϵr.
其中, ϵ r \epsilon_r ϵr 是一个预先定义的最大阈值, Q ( x ) : Ω → R \mathcal{Q}(\mathbf{x}):\Omega\to\mathbb{R} Q(x):ΩR 用于将计算域映射到表征系统性能的特征值。在PINN中可以选择 Q ( x ) = ∣ r ( x ; θ ) ∣ \mathcal{Q}(\mathbf{x})=|r(\mathbf{x};\theta)| Q(x)=r(x;θ) ,即
g ( x ) = ∣ r ( x ; θ ) ∣ − ϵ r . g(\mathbf{x})=|r(\mathbf{x};\theta)|-\epsilon_r. g(x)=r(x;θ)ϵr.
随后,可以通过 g ( x ) = 0 g(\mathbf{x})=0 g(x)=0 来将计算域分割为两个子域:可靠域 Ω S = { x : g ( x ) < 0 } \Omega_{\mathcal{S}}=\{\mathbf{x}:g(\mathbf{x})<0\} ΩS={x:g(x)<0} 以及失败域 Ω F = ⋅ { x : g ( x ) > 0 } \Omega_{\mathcal{F}}\stackrel{\cdot}{=}\{\mathbf{x}:g(\mathbf{x})>0\} ΩF={x:g(x)>0} 。有了上述子域,就可以对PINN的可靠性进行描述,可以定义PINN的失败可能性 P F P_{\mathcal{F}} PF 如下:
P F = ∫ Ω ω ( x ) I Ω F ( x ) d x . P_{\cal F}=\int_{\Omega}\omega(\mathbf{x})\mathbb{I}_{\Omega_{\cal F}}(\mathbf{x})d\mathbf{x}. PF=Ωω(x)IΩF(x)dx.
其中 I Ω F ( x ) : Ω → { 0 , 1 } \mathbb{I}_{\Omega_{\cal F}}(\mathbf{x}):\Omega\rightarrow\{0,1\} IΩF(x):Ω{0,1} 是一个根据上述子域定义的指示函数,当 x ∈ Ω F \mathbf{x}\in\Omega_{\mathcal{F}} xΩF 时, I Ω F ( x ) = 1 \mathbb{I}_{\Omega_{\cal F}}(\mathbf{x})=1 IΩF(x)=1 ,否则 I Ω F ( x ) = 0 \mathbb{I}_{\Omega_{\cal F}}(\mathbf{x})=0 IΩF(x)=0

当失败概率小于给定容差 ϵ p \epsilon_p ϵp 时,就认为PINN是可靠的,否则就认为PINN在失败域内是不可靠的,应当对其进行改进。总得来说,随着失败区域变小,失败的概率也会降低,整个系统也就更为可靠。受上述事实启发,作者认为可以设计相应自适应策略,在失败区域增加新的采样点,同时 P F P_{\cal F} PF 可以作为停止训练的标志,当 P F > ϵ p P_{\cal F} \gt \epsilon_p PF>ϵp 时一直训练PINN。算法表示如下:

在这里插入图片描述

在这里插入图片描述

Self-adaptive importance sampling

一个简单的评估失败概率的方法,就是使用蒙特卡洛采样。首先从先验分布 ω ( x ) \omega(\mathbf{x}) ω(x) 中生成采样点 S = { x 1 , x 2 , … , x ∣ S ∣ } \mathcal{S}=\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_{|\mathcal{S}|}\} S={x1,x2,,xS} ,然后可以得到离散的概率近似如下:
P ^ F M C = 1 ∣ S ∣ ∑ x ∈ S I Ω F ( x ) . \hat{P}_{\mathcal{F}}^{MC}=\frac{1}{|\mathcal{S}|}\sum_{\mathrm{x}\in\mathcal{S}}\mathbb{I}_{\Omega_{\mathcal{F}}}(\mathbf{x}). P^FMC=S1xSIΩF(x).
通过这种方法,可以得到如下采样策略:当 P ^ F M C > ϵ p \hat{P}_{\mathcal{F}}^{MC} \gt \epsilon_p P^FMC>ϵp 时,将新的采样点 { x i : x i ∈ S , g ( x i ) > 0 } \{\mathbf{x}_{i}:\mathbf{x}_{i}\in\mathcal{S},g(\mathbf{x}_{i})>0\} {xi:xiS,g(xi)>0} 加入训练集并训练一轮神经网络。可以看到,每轮训练点的数量并不一致,这是此方法与RAR方法的不同之一。RAR方法是选取 m m m 个LSF函数值最大的点加入训练集。

但上述策略在失败区域较小时会难以生成有效样本。当偏微分方程表现出局部行为时, ∣ S ∣ |\mathcal{S}| S 通常要达到 O ( 1 0 4 ∼ 1 0 6 ) \mathcal{O}(10^4\sim10^6) O(104106) ,这样就使得采样变得非常昂贵。

使用重要性采样可以避免这种开销,在这种情况下, P F P_{\cal F} PF 可以表示如下:
P F = ∫ Ω I Ω F ( x ) ω ( x ) h ( x ) h ( x ) d x = E h [ I Ω F ( x ) R ( x ) ] P_{\mathcal{F}}=\int_{\Omega}\mathbb{I}_{\Omega_{\mathcal{F}}}(\mathbf{x})\frac{\omega(\mathbf{x})}{h(\mathbf{x})}h(\mathbf{x})d\mathbf{x}=\mathbb{E}_{h}\left[\mathbb{I}_{\Omega_{\mathcal{F}}}(\mathbf{x})R(\mathbf{x})\right] PF=ΩIΩF(x)h(x)ω(x)h(x)dx=Eh[IΩF(x)R(x)]
其中 h ( x ) h(x) h(x) 是一个采样分布,假设 R ( x ) = ω ( x ) h ( x ) R(x) = \frac{\omega(x)}{h(x)} R(x)=h(x)ω(x) 表示权重函数,用于将采样分布 h ( x ) h(x) h(x) 转换到先验分布 ω ( x ) \omega(x) ω(x) 上,那么通过采样分布 h ( x ) h(x) h(x) 采样的一组样本点 S = { x 1 , x 2 , … , x ∣ S ∣ } \mathcal{S}=\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_{|\mathcal{S}|}\} S={x1,x2,,xS} ,可以得到 P F P_{\cal F} PF 表示如下:
P ^ F I S = 1 ∣ S ∣ ∑ x ∈ S I Ω F ( x ) R ( x ) \hat{P}_{\mathcal{F}}^{IS}=\frac{1}{|\mathcal{S}|}\sum_{\mathbf{x}\in\mathcal{S}}\mathbb{I}_{\Omega_{\mathcal{F}}}(\mathbf{x})R(\mathbf{x}) P^FIS=S1xSIΩF(x)R(x)
如果 h h h 的支集包含 ω \omega ω 的支集与失败集的交集,则 上式为 P F P_{\cal F} PF 的无偏估计量。理论上,存在最优采样分布如下:
h o p t ( x ) = I Ω F ( x ) ω ( x ) P F = I g ( x ) > 0 ω ( x ) ∫ Ω I g ( x ) > 0 ω ( x ) d x h_{opt}(\mathbf{x})=\frac{\mathbb{I}_{\Omega_{\cal F}(\mathbf{x})}\omega(\mathbf{x})}{P_{\cal F}}=\frac{\mathbb{I}_{g(\mathbf{x})>0}\omega(\mathbf{x})}{\int_{\Omega}\mathbb{I}_{g(\mathbf{x})>0}\omega(\mathbf{x})d\mathbf{x}} hopt(x)=PFIΩF(x)ω(x)=ΩIg(x)>0ω(x)dxIg(x)>0ω(x)
但在实际中由于归一化常数难以获得 h o p t h_{opt} hopt

因此,作者在实际中选择通过迭代的方式来获得 h o p t h_{opt} hopt 的近似。首先以 h 1 ( x ) = ω ( x ) h_1(x) = \omega(x) h1(x)=ω(x) 作为初始采样分布,然后在第 k k k 步,从 h k ( x ) h_k(x) hk(x) 生成 N 1 N_1 N1 个采样点 { x i k } i = 1 N 1 \{\mathbf{x}_i^k\}_{i=1}^{N_1} {xik}i=1N1 并根据LSF函数值对其进行排序,得到候选点集 D ~ k : = { x ~ i k } i = 1 N 1 \tilde{\mathcal{D}}_{k}:=\{\widetilde{\mathbf{x}}_{i}^{k}\}_{i=1}^{N_{1}} D~k:={x ik}i=1N1 .假设 $N_{p}=\left\lfloor p_{0}N_{1}\right\rfloor $ 表示用于近似最优分布 h o p t h_{opt} hopt 的最小样本数。其中 0 < p 0 < 1 0\lt p_0 \lt 1 0<p0<1 是固定参数。假设 N η N_{\eta} Nη 代表候选点集 D k D_k Dk 中落在失败集中的点数。于是,当 N η < N p N_{\eta} \lt N_p Nη<Np 时,代表采样分布任需要优化。否则,当 N η > N p N_{\eta} \gt N_p Nη>Np 时,代表区域内的点数可以用来近似 h ^ o p t \hat{h}_{opt} h^opt

h k h_k hk 需要优化时,作者使用了截断高斯模型,通过前 N p N_p Np 个样本来估计 h k + 1 h_{k+1} hk+1 的均值向量和协方差矩阵,如下所示:
μ k + 1 = 1 N p ∑ i = 1 N p x ~ i k , Σ k + 1 = 1 N p − 1 ∑ i = 1 N p ( x ~ i k − μ k + 1 ) ⊗ ( x ~ i k − μ k + 1 ) . \begin{aligned}\mu_{k+1}&=\frac{1}{N_p}\sum_{i=1}^{N_p}\widetilde{\mathbf{x}}_i^k,\\\Sigma_{k+1}&=\frac{1}{N_p-1}\sum_{i=1}^{N_p}(\widetilde{\mathbf{x}}_i^k-\mu_{k+1})\otimes(\widetilde{\mathbf{x}}_i^k-\mu_{k+1}).\end{aligned} μk+1Σk+1=Np1i=1Npx ik,=Np11i=1Np(x ikμk+1)(x ikμk+1).
同时,当迭代停止时,也就获得了最优分布的均值向量和协方差矩阵的近似,如下:
μ o p t = ∑ i = 1 N p x ~ i ω ( x ~ i ) ∑ i = 1 N p ω ( x ~ i ) Σ o p t = 1 N p − 1 ∑ i = 1 N p ( x ~ i − μ o p t ) ⊗ ( x ~ i − μ o p t ) . \begin{aligned} &\mu_{opt} =\frac{\sum_{i=1}^{N_p}\widetilde{\mathbf{x}}_i\omega(\widetilde{\mathbf{x}}_i)}{\sum_{i=1}^{N_p}\omega(\widetilde{\mathbf{x}}_i)} \\ &\Sigma_{opt} =\dfrac{1}{N_p-1}\sum_{i=1}^{N_p}(\widetilde{\mathbf{x}}_i-\mu_{opt})\otimes(\widetilde{\mathbf{x}}_i-\mu_{opt}). \end{aligned} μopt=i=1Npω(x i)i=1Npx iω(x i)Σopt=Np11i=1Np(x iμopt)(x iμopt).
因此,近似最优分布 h ^ o p t ( x ) \hat{h}_{opt}(x) h^opt(x) 是具有均值向量 μ o p t \mu_{opt} μopt 和协方差矩阵 Σ o p t \Sigma_{opt} Σopt 的截断高斯分布。通过从 h ^ o p t ( x ) \hat{h}_{opt}(x) h^opt(x) 生成 N 2 N_2 N2 个样本,失败概率可以近似为:
P ^ F S A I S = 1 N 2 ∑ i = 1 N 2 ω ( x i ) h ^ o p t ( x i ) I Ω F ( x i ) . \hat{P}_{\mathcal{F}}^{SAIS}=\frac{1}{N_{2}}\sum_{i=1}^{N_{2}}\frac{\omega(\mathbf{x}_{i})}{\hat{h}_{opt}(\mathbf{x}_{i})}\mathbb{I}_{\Omega_{\mathcal{F}}}(\mathbf{x}_{i}). P^FSAIS=N21i=1N2h^opt(xi)ω(xi)IΩF(xi).
完整算法如下:

在这里插入图片描述

实验结果

作者在二维Poisson、Burgers、高维Poissin、二维无界问题以及时间相关的无界问题上对比了均匀采样的PINN方法、RAR方法以及使用SAIS的FI-PINN方法。

二维Poisson

− Δ u ( x , y ) = f ( x , y ) in Ω u ( x , y ) = g ( x , y ) on ∂ Ω , \begin{aligned}-\Delta u(x,y)&=f(x,y)&\text{in}\Omega\\u(x,y)&=g(x,y)&\text{on}\partial\Omega,\end{aligned} Δu(x,y)u(x,y)=f(x,y)=g(x,y)inΩonΩ,

其精确解为
u ( x , y ) = exp ⁡ ( − 1000 [ ( x − 0.5 ) 2 + ( y − 0.5 ) 2 ] ) u(x,y)=\exp\left(-1000\left[(x-0.5)^2+(y-0.5)^2\right]\right) u(x,y)=exp(1000[(x0.5)2+(y0.5)2])
在这里插入图片描述

上图为训练过程中的 L 2 L_2 L2 误差以及失败概率。

在这里插入图片描述

上图为训练过程中三种算法在前三次迭代中生成的训练点

在这里插入图片描述

上图为三种方法为训练结果可视化,左侧为生成的解,中间为与真实解的绝对误差,右侧为 x = 0.5 x=0.5 x=0.5 处生成解与真解的对比。

在这里插入图片描述

上图为对两个超参数进行的试验。

更多样例详见原文。

总结

这篇文章通过将求解域划分为可靠域、失败域两个子域建立了FI-PINN体系。并通过截断高斯分布的叠加来对最优采样分布进行近似,得到SAIS方法。感觉设计的都挺巧妙的,但没给代码,试着复现一下。

相关链接:

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuelanghanbao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值