串的模式匹配算法:BF和 KMP算法

Brute-Force算法的思想

1.BF(Brute-Force)算法  

Brute-Force算法的基本思想是:

1) 从目标串s 的第一个字符起和模式串t的第一个字符进行比较,若相等,则继续逐个比较后续字符,否则从串s 的第二个字符起再重新和串t进行比较。

2) 依此类推,直至串t 中的每个字符依次和串s的一个连续的字符序列相等,则称模式匹配成功,此时串t的第一个字符在串s 中的位置就是t 在s中的位置,否则模式匹配不成功。

Brute-Force算法的实现   


C语言实现:

  1. // Test.cpp : Defines the entry point for the console application.    
  2. //    
  3. #include "stdafx.h"    
  4. #include <stdio.h>    
  5. #include "stdlib.h"  
  6. #include <iostream>  
  7. using namespace std;  
  8.   
  9. //宏定义      
  10. #define TRUE   1      
  11. #define FALSE   0      
  12. #define OK    1      
  13. #define ERROR   0    
  14.   
  15. #define  MAXSTRLEN 100  
  16.   
  17. typedef char    SString[MAXSTRLEN + 1];  
  18. /************************************************************************/  
  19. /*  
  20.  返回子串T在主串S中第pos位置之后的位置,若不存在,返回0 
  21. */  
  22. /************************************************************************/  
  23. int BFindex(SString S, SString T, int pos)  
  24. {  
  25.     if (pos <1 ||  pos > S[0] ) exit(ERROR);  
  26.     int i = pos, j =1;  
  27.     while (i<= S[0] && j <= T[0])  
  28.     {  
  29.         if (S[i] == T[j])  
  30.         {  
  31.             ++i; ++j;  
  32.         } else {  
  33.             i = i- j+ 2;  
  34.             j = 1;  
  35.         }  
  36.     }  
  37.     if(j > T[0]) return i - T[0];  
  38.     return ERROR;  
  39. }  
  40.   
  41.   
  42.   
  43. void main(){  
  44.     SString S = {13,'a','b','a','b','c','a','b','c','a','c','b','a','b'};  
  45.     SString T = {5,'a','b','c','a','c'};  
  46.     int pos;  
  47.     pos = BFindex( S,  T, 1);  
  48.     cout<<"Pos:"<<pos;  
  49. }  


2.KMP算法

2.1 算法思想:

每当一趟匹配过程中出现字符比较不等时,不需要回溯I指针,而是利用已经的带的“部分匹配”的结果将模式向右滑动尽可能远的一段距离后,继续进行比较。

即尽量利用已经部分匹配的结果信息,尽量让i不要回溯,加快模式串的滑动速度。





需要讨论两个问题:
①如何由当前部分匹配结果确定模式向右滑动的新比较起点k?
② 模式应该向右滑多远才是高效率的?

现在讨论一般情况:

假设 主串:s: ‘s(1)  s(2) s(3) ……s(n)’ ;  模式串 :p: ‘p(1)  p(2) p(3)…..p(m)’

现在我们假设 主串第i个字符与模式串的第j(j<=m)个字符失配后,主串第i个字符与模式串的第k(k<j)个字符继续比较

此时,s(i)≠p(j):


由此,我们得到关系式:即得到到1 到  j -1 "部分匹配"结果:

 ‘P(1)  P(2) P(3)…..P(j-1)’   =    ’ S(i-j+1)……S(i-1)’

 从而推导出k 到 j- 1位的“部分匹配”:即Pj-1j-k=S前i-1~i- (k -1))位             

  ‘P(j - k + 1) …..P(j-1)’  =  ’S(i-k+1)S(i-k+2)……S(i-1)’

由于s(i)≠p(j),接下来s(i)将与p(k)继续比较,则模式串中的前(k-1)个字符的子串必须满足下列关系式,并且不可能存在  k’>k  满足下列关系式:(k<j)


有关系式: 即(P的前k- 1 ~ 1位= S前i-1~i-(k-1) )位 ) ,

‘P(1) P(2)  P(3)…..P(k-1)’ = ’S(i-k+1)S(i-k+2)……S(i-1)’

现在我们把前面总结的关系综合一下,有:


由上,我们得到关系:

‘p(1)  p(2)  p(3)…..p(k-1)’  =   ‘p(j - k + 1) …..p(j-1)’ 

      反之,若模式串中满足该等式的两个子串,则当匹配过程中,主串中的第i 个字符与模式中的第j个字符等时,仅需要将模式向右滑动至模式中的第k个字符和主串中的第i个字符对齐。此时,模式中头k-1个字符的子串 ‘p(1)  p(2)  p(3)…..p(k-1)’   必定与主串中的第i 个字符之前长度为k-1 的子串   ’s(j-k+1)s(j-k+2)……s(j-1)’ 相等,由此,匹配仅需要从模式中的第 k 个字符与主串中的第 i 个字符比较起 继续进行。      若令 next[j] = k ,则next[j] 表明当模式中第j个字符与主串中相应字符“失配”时,在模式中需要重新和主串中该字符进行的比较的位置。由此可引出模式串的next函数:

根据模式串P的规律:  ‘p(1)  p(2)  p(3)…..p(k-1)’  =   ‘p(j - k + 1) …..p(j-1)’ 

由当前失配位置j(已知) ,可以归纳计算新起点k的表达式。





由此定义可推出下列模式串next函数值:




模式匹配过程:


KMP算法的实现:

第一步,先把模式T所有可能的失配点j所对应的next[j]计算出来;

第二步:执行定位函数Index_kmp(与BF算法模块非常相似

  1. int KMPindex(SString S, SString T, int pos)  
  2. {  
  3.     if (pos <1 ||  pos > S[0] ) exit(ERROR);  
  4.     int i = pos, j =1;  
  5.     while (i<= S[0] && j <= T[0])  
  6.     {  
  7.         if (S[i] == T[j]) {  
  8.             ++i; ++j;  
  9.         } else {  
  10.             j = next[j+1];  
  11.         }  
  12.     }  
  13.     if(j > T[0]) return i - T[0];  
  14.     return ERROR;  
  15. }  


完整实现代码:

  1. // Test.cpp : Defines the entry point for the console application.    
  2. //    
  3. #include "stdafx.h"    
  4. #include <stdio.h>    
  5. #include "stdlib.h"  
  6. #include <iostream>  
  7. using namespace std;  
  8.   
  9. //宏定义      
  10. #define TRUE   1      
  11. #define FALSE   0      
  12. #define OK    1      
  13. #define ERROR   0    
  14.   
  15. #define  MAXSTRLEN 100  
  16.   
  17. typedef char    SString[MAXSTRLEN + 1];  
  18.   
  19. void GetNext(SString T, int next[]);  
  20. int KMPindex(SString S, SString T, int pos);  
  21. /************************************************************************/  
  22. /*  
  23.  返回子串T在主串S中第pos位置之后的位置,若不存在,返回0 
  24. */  
  25. /************************************************************************/  
  26. int KMPindex(SString S, SString T, int pos)  
  27. {  
  28.     if (pos <1 ||  pos > S[0] ) exit(ERROR);  
  29.     int i = pos, j =1;  
  30.     int next[MAXSTRLEN];  
  31.     GetNext( T, next);  
  32.     while (i<= S[0] && j <= T[0])  
  33.     {  
  34.         if (S[i] == T[j]) {  
  35.             ++i; ++j;  
  36.         } else {  
  37.             j = next[j];  
  38.         }  
  39.     }  
  40.     if(j > T[0]) return i - T[0];  
  41.     return ERROR;  
  42. }  
  43.   
  44. /************************************************************************/  
  45. /*      求子串next[i]值的算法 
  46. */  
  47. /************************************************************************/  
  48. void GetNext(SString T, int next[])  
  49. {   int j = 1, k = 0;  
  50.     next[1] = 0;  
  51.     while(j < T[0]){  
  52.         if(k == 0 || T[j]==T[k]) {     
  53.             ++j;  ++k;   next[j] = k;    
  54.         } else {  
  55.             k = next[k];   
  56.         }  
  57.     }  
  58. }  
  59.   
  60. void main(){  
  61.     SString S = {13,'a','b','a','b','c','a','b','c','a','c','b','a','b'};  
  62.     SString T = {5,'a','b','c','a','c'};  
  63.     int pos;  
  64.     pos = KMPindex( S,  T, 1);  
  65.     cout<<"Pos:"<<pos;  
  66. }  



2.2  求串的模式值next[n]

k值仅取决于模式串本身而与相匹配的主串无关。

我们使用递推到方式求next函数:
1)由定义可知:
     next[1] = 0;
2)  设 next[j] = k ,这个表面在模式串中存在下列关系:
    ‘P(1)  ….. P(k-1)’  =   ‘P(j - k + 1) ….. P(j-1)’ 
    其中k为满足1< k <j的某个值,并且不可能存在k` > 满足:
    ‘P(1)  ….. P(k`-1)’  =   ‘P(j - k` + 1) ….. P(j-1)’ 
    此时next[j+1] = ?可能有两种情况:
   (1) 若Pk = Pj,则表明在模式串中:

  ‘P(1) ….. P(k)’  =   ‘P(j - k + 1) ….. P(j)’ 
          并且不可能存在k` > 满足:  ‘P(1) ….. P(k`)’  =   ‘P(j - k` + 1) ….. P(j)’ 
          即next[j+1] = k + 1 推到=》:

         next[j+1] = next[j] + 1;

      (2)  若PkPj 则表明在模式串中:

          ‘P(1) ….. P(k)’     ‘P(j - k + 1) ….. P(j)’ 
     此时可把next函数值的问题看成是一个模式匹配的问题,整个模式串即是主串又是模式串
     而当前匹配的过程中,已有:

      Pj-k+1 = P1, Pj-k+2 = P2,... Pj-1 = Pk-1.
     则当PkPj时应将模式向右滑动至以模式中的第next[k]个字符和主串中的第 个字符相比较。
     若next[k] = k`,且Pj= Pk`, 则说明在主串中的第j+1 个字符之前存在一个长度为k` (即next[k])的最长子串,和模式串
     从首字符其长度为看k`的子串箱等。即
       ‘P(1) ….. P(k`)’  =  ‘P(j - k` + 1) ….. P(j)’ 
     也就是说next[j+1] = k` +1 即
     next[j+1] = next[k] + 1
     同理,若
Pj Pk` ,则将模式继续向右滑动直至将模式串中的第next[k`]个字符和Pj对齐,
     ... ,一次类推,直至Pj和模式中某个字符匹配成功或者不存在k`(1< k` < j)满足,则:
     next[j+1] =1;

    


  1. /************************************************************************/  
  2. /*      求子串next[i]值的算法 
  3. */  
  4. /************************************************************************/  
  5. void GetNext(SString T, int next[])  
  6. {   int j = 1, k = 0;  
  7.     next[1] = 0;  
  8.     while(j < T[0]){  
  9.         if(k == 0 || T[j]==T[k]) {     
  10.             ++j;  ++k;   next[j] = k;    
  11.         } else {  
  12.             k = next[k];   
  13.         }  
  14.     }  
  15. }  

next  函数值究竟是什么含义,前面说过一些,这里总结。
设在字符串 S 中查找模式串 T ,若 S[m]!=T[n], 那么,取 T[n] 的模式函数值 next[n],
1.         next[n] = 0  表示 S[m] T[1] 间接比较过了,不相等,下一次比较  S[m+1]  T[1]
2.         next[n] =1  表示比较过程中产生了不相等,下一次比较  S[m]  T[1]
3.         next[n] = k >1  k<n,  表示 ,S[m] 的前 k 个字符与 T 中的开始 k 个字符已经间接比较相等了,下一次比较 S[m] T[k] 相等吗?
4.         其他值,不可能。

注意:

(1)k值仅取决于模式串本身而与相匹配的主串无关。

(2)k值为模式串从头向后及从j向前的两部分的最大相同子串的长度

(3)这里的两部分子串可以有部分重叠的字符,但不可以全部重叠。

next[j]函数表征着模式P中最大相同前缀子串和后缀子串(真子串)的长度。

可见,模式中相似部分越多,则next[j]函数越大,它既表示模式T字符之间的相关度越高,也表示j位置以前与主串部分匹配的字符数越多。

即:next[j]越大,模式串向右滑动得越远,与主串进行比较的次数越少,时间复杂度就越低(时间效率)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值