计算电磁学:FDTD算法总结

本文介绍了计算电磁学中的FDTD(FiniteDifferenceTimeDomain)算法,涵盖了物理模型(如库仑定律和洛伦兹力)、数学模型(Maxwell方程组及其离散化)、时间与空间离散方法、边界条件处理、源项处理以及收敛性和稳定性条件。同时提到了相关理论书籍和开源资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算电磁学(Computational Electromagnetics, CEM)是通过数值计算来研究电磁场的交叉学科。

数值求解电磁学问题的方法可以分成频域(Frequency Doamin, FD)、时域(Time Domain, TD)等两类。

频域法基于时谐微分,通过对多个采样值的傅里叶逆变换得到所需的脉冲响应,使用这种方法,每次计算只能求得一个频率点上的响应。这类方法又可进一步分成低频算法高频算法等两类。低频算法包括矩量法(Method of Moment, MoM)、频域有限差分(Finite Difference Frequency Doamin, FDFD)等;高频算法包括几何光学法、物理光学法等。

时域法按时间步进求得有关场量,一次求解可以获得很宽频带范围内的解。这类方法包括时域有限差分(Finite Difference Time Domain,FDTD)、时域有限单元(Finite Element Time Domain,FETD)等。

在时域法中,最为著名的就是FDTD。因此,本文拟对FDTD算法涉及的数理模型数值模型等内容进行简要介绍。

注1:限于研究水平,分析难免不当,欢迎批评指正。

注2:文章内容会不定期更新。

零、预修:物理模型

0.1 Coulomb's law

1785年由法国科学家C,-A.de库仑根据实验得出,真空中两个静止的点电荷之间的相互作用力与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上,同名电荷相斥,异名电荷相吸。

\boldsymbol{f}=k\frac{q_{1}q_{2}}{r^{2}}\boldsymbol{e}_{r}

其中,\boldsymbol{e}_{r}是从q_{1}q_{2}的单位矢量,k为库伦常数,大小为9\times 10^{9}Nm^{2}/C^{2}

0.2 Lorentz Force

1895年,荷兰物理学家H·A·洛伦兹建立经典电子论时,作为基本假定首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点。

洛伦兹力是运动电荷在磁场中所受到的力,即磁场对运动电荷的作用力。

\boldsymbol{f}=q\left ( \boldsymbol{E}+\boldsymbol{v}\times \boldsymbol{B} \right )

其中,q是带电粒子的电荷量;\boldsymbol{E}是电场强度;\boldsymbol{v}是带电粒子的速度;B是磁感应强度。

洛伦兹力的方向可以通过左手定则来判断,即伸开左手,使拇指与其余四个手指垂直,并且都与手掌处于同一水平面,让磁感线从掌心进入,四指指向正电荷运动的方向,拇指指的方向即洛伦兹力的方向。

0.3 Ampere circuital theorem

0.4 Faraday law of electromagnetic induction

一、数学模型:Maxell方程组

1864年,Maxwell在前人工作的基础之上,建立了统一的电磁场理论,并用一组数学方程揭示了宏观电磁场的基本规律,这就是著名的Maxwell方程组。

Maxwell方程组有四个方程组成:描述电荷如何产生电场的高斯定律;论述磁单极子不存在的高斯磁定律;描述电流和时变电场怎样产生磁场的安培环路定律;描述时变磁场如何产生电场的法拉第感应定律

\left\{\begin{matrix} \nabla \cdot \boldsymbol{D}=\rho\\ \nabla\cdot \boldsymbol{B}=0\\ \nabla\times \boldsymbol{H}=\boldsymbol{J}+\frac{\partial \boldsymbol{D}}{\partial t}\\ \nabla\times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}-\boldsymbol{M} \end{matrix}\right.

可以看出,电流密度\boldsymbol{J}、磁流密度\boldsymbol{M}是以源项的形式出现在磁场旋度方程、电场旋度方程。

本构关系的一般表达式为,

\left\{\begin{matrix} \boldsymbol{D}=\boldsymbol{\epsilon}\boldsymbol{E}+\boldsymbol{\xi }\boldsymbol{H}\\ \boldsymbol{B}=\boldsymbol{\mu} \boldsymbol{E}+\boldsymbol{\zeta} \boldsymbol{H} \end{matrix}\right.

\boldsymbol{\epsilon},\boldsymbol{\xi },\boldsymbol{\mu},\boldsymbol{\zeta}是角频率\omega的函数,则称介质是色散介质。

对于均匀各向同性介质,本构方程简化为,

\left\{\begin{matrix} \boldsymbol{D}=\varepsilon\boldsymbol{E}\\ \boldsymbol{B}=\mu \boldsymbol{H}\end{matrix}\right.

在介质交界面处,场变量可能会发生突变,基于积分形式的Maxwell方程组,可得以下关系式,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值