一,为什么要冗余数据
互联网数据量很大的业务场景,往往数据库需要进行水平切分来降低单库数据量。
水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非patition key上的查询可能就需要扫描多个库了。
此时常见的架构设计方案,是使用数据冗余这种反范式设计来满足分库后不同维度的查询需求。
例如:订单业务,对用户和商家都有查询需求:
Order(oid, info_detail);
T(buyer_id, seller_id, oid);
如果用buyer_id来分库,seller_id的查询就需要扫描多库。
如果用seller_id来分库,buyer_id的查询就需要扫描多库。
此时可以使用数据冗余来分别满足buyer_id和seller_id上的查询需求:
T1(buyer_id, seller_id, oid)
T2(seller_id, buyer_id, oid)
同一个数据,冗余两份,一份以buyer_id来分库,满足买家的查询需求;一份以seller_id来分库,满足卖家的查询需求。
如何实施数据的冗余,以及如何保证数据的一致性,是今天将要讨论的内容。
二,如何进行数据冗余
(1)服务同步双写
顾名思义,由服务层同步写冗余数据,如上图1-4流程:
-
业务方调用服务,新增数据
-
服务先插入T1数据
-
服务再插入T2数据
-
服务返回业务方新增数据成功
优点:
-
不复杂,服务层由单次写,变两次写
-
数据一致性相对较高(因为双写成功才返回)
缺点:
-
请求的处理时间增加(要插入两次,时间加倍)
-
数据仍可能不一致,例如第二步写入T1完成后服务重启,则数据不会写入T2
如果系统对处理时间比较敏感,引出常用的第二种方案。
(2)服务异步双写
数据的双写并不再由服务来完成,服务层异步发出一个消息,通过消息总线发送给一个专门的数据复制服务来写入冗余数据,如上图1-6流程:
-
业务方调用服务,新增数据
-
服务先插入T1数据
-
服务向消息总线发送一个异步消息(发出即可,不用等返回,通常很快就能完成)
-
服务返回业务方新增数据成功
-
消息总线将消息投递给数据同步中心
-
数据同步中心插入T2数据
优点:
-
请求处理时间短(只插入1次)
缺点:
-
系统的复杂性增加了,多引入了一个组件(消息总线)和一个服务(专用的数据复制服务)
-
因为返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)
-
在消息总线丢失消息时,冗余表数据会不一致
不管是服务同步双写,还是服务异步双写,服务都需要关注“冗余数据”带来的复杂性。如果想解除“数据冗余”对系统的耦合,引出常用的第三种方案。
(3)线下异步双写
为了屏蔽“冗余数据”对服务带来的复杂性,数据的双写不再由服务层来完成,而是由线下的一个服务或者任务来完成,如上图1-6流程:
-
业务方调用服务,新增数据
-
服务先插入T1数据
-
服务返回业务方新增数据成功
-
数据会被写入到数据库的log中
-
线下服务或者任务读取数据库的log
-
线下服务或者任务插入T2数据
优点:
-
数据双写与业务完全解耦
-
请求处理时间短(只插入1次)
缺点:
-
返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)
-
数据的一致性依赖于线下服务或者任务的可靠性
不管哪种方案,毕竟不是分布式事务,万一出现数据不一致,怎么办呢?
高并发的情况下,实时一致性很难,方法论是:最终一致性。
实现方式是:异步检测,异步修复。
三,如何保证数据的一致性
(1)线下扫描全量数据法
如上图所示,线下启动一个离线的扫描工具,不停的比对正表T1和反表T2,如果发现数据不一致,就进行补偿修复。
优点:
-
比较简单,开发代价小
-
线上服务无需修改,修复工具与线上服务解耦
缺点:
-
扫描效率低,会扫描大量的“已经能够保证一致”的数据
-
由于扫描的数据量大,扫描一轮的时间比较长,即数据如果不一致,不一致的时间窗口比较长
有没有只扫描“可能存在不一致可能性”的数据,而不是每次扫描全部数据,以提高效率的优化方法呢?
(2)线下扫描增量数据法
每次只扫描增量的日志数据,就能够极大提高效率,缩短数据不一致的时间窗口,如上图1-4流程所示:
-
写入正表T1
-
第一步成功后,写入日志log1
-
写入反表T2
-
第二步成功后,写入日志log2
当然,我们还是需要一个离线的扫描工具,不停的比对日志log1和日志log2,如果发现数据不一致,就进行补偿修复
优点:
-
虽比方法一复杂,但仍然是比较简单的
-
数据扫描效率高,只扫描增量数据
缺点:
-
线上服务略有修改(代价不高,多写了2条日志)
-
虽然比方法一更实时,但时效性还是不高,不一致窗口取决于扫描的周期
有没有实时检测一致性并进行修复的方法呢?
(3)线上实时检测“消息对”法
这次不是写日志了,而是向消息总线发送消息,如上图1-4流程所示:
-
写入正表T1
-
第一步成功后,发送消息msg1
-
写入反表T2
-
第二步成功后,发送消息msg2
这次不是需要一个周期扫描的离线工具了,而是一个实时订阅消息的服务不停的收消息。
假设正常情况下,msg1和msg2的接收时间应该在3s以内,如果检测服务在收到msg1后没有收到msg2,就尝试检测数据的一致性,不一致时进行补偿修复。
优点:
-
效率高
-
实时性高
缺点:
-
方案比较复杂,上线引入了消息总线这个组件
-
线下多了一个订阅总线的检测服务
however,技术方案本身就是一个投入产出比的折衷,可以根据业务对一致性的需求程度决定使用哪一种方法。我曾经做过IM系统,好友关系链上亿,好友数据正反表的数据冗余,使用的就是方法二。
四,总结
互联网数据量大的业务场景,常常:
-
使用水平切分来降低单库数据量
-
使用数据冗余的反范式设计来满足不同维度的查询需求
-
冗余数据三种方案:
(1)服务同步双写法能够很容易的实现数据冗余
(2)为了降低时延,可以优化为服务异步双写法
(3)为了屏蔽“冗余数据”对服务带来的复杂性,可以优化为线下异步双写法
-
保证数据一致性的方案:
(1)最简单的方式,线下脚本扫全量数据比对
(2)提高效率的方式,线下脚本扫增量数据比对
(3)最实时的方式,线上检测“消息对”