智能化技术分享

ERP MES 移动工票 智能化软件开发

  • 博客(108)
  • 收藏
  • 关注

原创 Python 深度学习 第12章 生成式深度学习

第12章探讨了生成式深度学习的应用,包括文本生成、DeepDream、神经风格迁移、变分自编码器(VAE)和生成对抗网络(GAN)。通过这些技术,读者将了解如何使用深度学习进行艺术创作和内容生成。通过本章,读者将掌握如何使用深度学习技术进行创意任务,如文本生成、图像风格迁移和新图像的生成。

2025-04-21 09:00:00 1153

原创 Python 深度学习实战 第11章 自然语言处理(NLP)实例

第11章深入探讨了自然语言处理(NLP)的深度学习应用,涵盖了从文本预处理到序列到序列学习的多种技术。本章通过IMDB电影评论情感分类和英西翻译任务,详细介绍了如何使用循环神经网络(RNN)、卷积神经网络(CNN)和Transformer架构来处理文本数据。读者将掌握如何使用深度学习解决文本分类和序列到序列问题,并理解Transformer的工作原理。

2025-04-20 17:11:55 956

原创 Python 深度学习实战 第10章 使用深度学习处理时间序列&RNN预测实例

通过本章的学习,读者将掌握时间序列数据的深度学习处理方法,包括如何使用RNN及其变体进行预测、分类和异常检测。这些知识将为解决实际问题提供强大的工具。

2025-04-19 08:16:34 648

原创 Python 深度学习实战 第9章 计算机视觉中的高级深度学习应用(图像分类 图像分割 目标检测)

通过本章的学习,读者将掌握计算机视觉中的高级深度学习技术,包括图像分类、图像分割和目标检测。通过理解现代卷积神经网络的架构模式和解释方法,读者将能够开发出更高性能的模型,并深入理解模型的决策过程。

2025-04-18 09:00:00 1109

原创 Python 深度学习 第8章 计算机视觉中的深度学习 - 卷积神经网络使用实例

深入探讨了计算机视觉中的深度学习,特别是卷积神经网络(convnets)的应用。本章详细介绍了卷积层和池化层的工作原理、数据增强技术、预训练模型的特征提取和微调方法。通过本章,读者将掌握如何使用深度学习解决图像分类问题,尤其是在小数据集上的应用。

2025-04-17 10:31:57 1190

原创 如何为Odoo 18计算字段添加反向函数

在高度可定制的Odoo ERP系统中,计算字段是实现动态数据处理的利器。然而,在 Odoo 中,计算字段默认是只读的。如果你希望允许用户修改计算字段,并使这些更改反映在其他相关字段中,可以通过定义反向函数来实现。本文将深入解析反向函数的工作原理,并通过实战案例演示其在Odoo 18中的具体应用。

2025-04-15 11:18:04 1098

原创 Python 深度学习实战 第7章 深入研究 Keras

第7章深入探讨了Keras的高级功能,包括模型构建、训练和评估的不同方法。本章详细介绍了Keras的三种模型构建方式(Sequential模型、Functional API和Model子类化),以及如何使用内置的训练和评估循环、自定义训练循环和TensorBoard进行监控。通过本章,读者将掌握Keras的高级用法,为解决复杂问题做好准备。

2025-04-15 10:01:16 841

原创 Python 机器学习实战 第6章 机器学习的通用工作流程实例

通过本章的学习,读者将对机器学习的通用工作流程有一个清晰的理解,并掌握如何从问题定义到模型部署和维护的全过程。通过实践示例,读者可以学习如何有效地定义任务、开发模型并将其部署到生产环境中。这些知识将为解决实际问题提供坚实的基础。

2025-04-14 13:21:30 962

原创 Python 深度学习实战 第5章 机器学习的核心问题泛化及如何提高模型的泛化能力实例

通过本章的学习,读者将对机器学习中的泛化问题有一个清晰的理解,并掌握如何评估和提高模型的泛化能力。通过实践示例,读者可以学习如何使用Keras和TensorFlow实现模型评估、改善模型拟合和提高泛化性能。这些知识将为解决实际问题提供坚实的基础。

2025-04-13 09:15:00 1860

原创 Python 深度学习实战 第4章 使用神经网络实现新闻分类&情感分析&房价预测

第4章通过三个实际案例介绍了如何使用神经网络解决分类和回归问题。这些案例包括二元分类(电影评论情感分析)、多类分类(新闻主题分类)和标量回归(房价预测)。本章涵盖了数据预处理、模型构建、训练和评估等关键步骤。

2025-04-12 09:15:00 1138

原创 Python 深度学习实战 第3章 Keras和TensorFlow&Keras 训练和评估模型实例

通过本章的学习,读者将对Keras和TensorFlow的基本概念有一个清晰的理解,并能够设置深度学习工作区。通过实践示例,读者可以掌握如何使用Keras和TensorFlow构建和训练神经网络,并为解决实际问题做好准备。

2025-04-11 13:45:00 945

原创 Python 深度学习实战 第2章 神经网络的数学基础&从头手撸神经网络

通过本章的学习,读者将对深度学习的数学基础有一个直观的理解,包括张量、张量操作、梯度下降和反向传播等关键概念。通过MNIST手写数字分类示例,读者可以实践如何构建和训练神经网络,并理解其背后的数学原理。这些内容为后续章节的实践应用奠定了基础。

2025-04-11 09:00:00 1050

原创 Python 深度学习实战 第1章 什么是深度学习&代码示例

内容概要第1章介绍了深度学习的背景、发展历史及其在人工智能(AI)和机器学习(ML)中的地位。本章探讨了深度学习的定义、其与其他机器学习方法的关系,以及深度学习在近年来取得的成就和未来潜力。主要内容人工智能、机器学习和深度学习的定义人工智能(AI):旨在自动化通常由人类执行的智力任务,是一个广泛的领域,包括机器学习和深度学习。机器学习(ML):通过从数据中学习规则和表示来执行任务,而不是通过显式编程。深度学习(DL):机器学习的一个子领域,强调通过多层表示学习来解决问题。深度学习的历史背景。

2025-04-10 11:27:46 1368 2

原创 如何在 Odoo 18 中配置定时动作Cron

在企业工作流程中,常常会遇到不需要人工干预但需要定期执行的任务,这时自动化或定时操作就能派上用场。定时操作也被称为 cron 作业,它是一个强大的工具,可实现日常定时任务的自动化。作为Odoo 18中的强大功能,它通过后台作业机制实现自动化任务调度。下面我们将详细讲解如何在Odoo 18中配置Cron定时任务。

2025-04-09 11:27:49 1105

原创 深度学习 Deep Learning 第20章 深度生成模型

第20章详细介绍了多种深度生成模型及其训练方法。这些模型通过不同的策略(如对比散度、变分推断、对抗训练等)来解决复杂的概率分布建模问题。这些技术在深度学习中具有重要意义,特别是在生成数据、表示学习和推理方面。生成模型不仅能够生成高质量的样本,还能提供对数据分布的深刻理解,为AI系统提供了处理不确定性的能力。

2025-04-08 09:52:45 1142 2

原创 深度学习 Deep Learning 第19章 近似推理

这些方法通过不同的策略优化ELBO,从而在复杂的概率模型中实现高效的推理。:深度学习模型的计算常因复杂性和数据规模陷入困境,近似推理恰如一座桥梁,让我们在无法实现精确计算的情况下,找到切实可行的路径,平衡计算成本与结果可靠性,使模型在实际应用中得以施展。:近似推理并非以牺牲精度为代价,而是在有限的时间、内存等资源条件下,巧妙调整策略,找到既能满足一定精度要求,又能高效运行的平衡点,这需要对模型、数据和方法的深刻理解与巧妙运用。变分推理的近似,则以优化的智慧,在假设分布中雕琢出与真实后验相近的模样。

2025-04-07 11:28:38 1038

原创 三步在 Odoo 中实现智能化客户反馈闭环

在当今竞争激烈的商业环境中,对于一个组织而言,优质的客户服务是必不可少的。提升客户满意度的最佳方式是将客户反馈和评分纳入业务流程中。Odoo 提供了一种简便高效的方式来收集客户反馈。Odoo 18通过**评分混入(Rating Mixin)**技术,打造智能化客户反馈闭环系统,帮助企业实现优质客户服务。

2025-04-06 09:15:00 784

原创 深度学习 Deep Learning 第18章 应对配分函数

第18章详细介绍了多种应对分区函数问题的方法。这些方法通过不同的策略避免或近似计算分区函数,从而使得复杂的概率模型(如能量模型)在实际应用中变得可行。这些方法在深度学习中具有重要意义,特别是在训练和评估复杂模型时。

2025-04-05 09:15:00 700

原创 深度学习 Deep Learning 第17章 蒙特卡洛方法

这些方法通过随机采样近似复杂的积分和求和问题,特别适用于无法通过精确方法解决的情况。重要性采样和MCMC方法提供了灵活的工具来提高采样效率,尽管在处理多模式分布时面临挑战,但通过模拟退火和深度表示等策略可以显著改善采样效果。这些方法在机器学习中尤为重要,因为许多问题难以通过精确方法解决,需要借助随机采样来近似。本章详细介绍了蒙特卡洛方法的基本原理、重要性采样、马尔可夫链蒙特卡洛(MCMC)方法及其在深度学习中的应用。:蒙特卡洛方法通过随机采样近似复杂的积分和求和问题,特别适用于无法通过精确方法解决的情况。

2025-04-04 09:15:00 744

原创 深度学习 Deep Learning 第16章 结构化概率模型

本章深入探讨了结构化概率模型(Graphical Models,包含有向图和无向图模型)的概念及其在深度学习中的应用。结构化概率模型通过图结构描述随机变量之间的直接交互,从而简化概率分布的表示和学习。本章详细介绍了结构化概率模型的基本概念、挑战、模型结构、采样方法、推理和近似推理,以及深度学习中独特的结构化概率模型方法。:有向模型适合描述因果关系明确的场景,而无向模型适合描述交互方向不明确的场景。:深度学习中的结构化概率模型通过分布式表示和密集连接,捕捉复杂的非线性交互。

2025-04-03 16:52:07 641

原创 Odoo 用户菜单架构解析及创建和管理实战

Odoo 中的用户菜单提供了一个简洁的界面,用户可以通过一个下拉菜单轻松访问关键功能、我的设置、寻求支持以及进行入职引导等操作。本文将深入解析Odoo 18用户菜单系统的技术架构,通过实战案例演示如何为系统管理员添加开发者模式快捷入口。要实现这一点,我们可以向 user_menuitems 注册器中添加新的项目。注册器就像是一个有序的键值对集合,是扩展 Odoo Web 客户端的主要方式。当 JavaScript 框架需要检索字段、视图、操作或服务等的定义时,只需在注册器中查找即可。

2025-04-03 10:24:51 718

原创 深度学习 Deep Learning 第15章 表示学习

第15章详细介绍了表示学习的概念及其在深度学习中的应用。表示学习通过学习数据的有效表示,使得后续的学习任务变得更加容易。贪婪逐层无监督预训练作为一种重要的表示学习方法,通过逐层训练单层模型,逐步构建深度网络。无监督预训练在标签数据较少的场景中特别有效,可以作为正则化手段提高模型性能。表示学习的成功不仅基于理论优势,还依赖于对数据生成过程的合理假设。这些方法在实际应用中取得了广泛的成功。

2025-04-02 10:39:21 943

原创 深度学习 Deep Learning 第14章 自编码器

本章详细介绍了自编码器及其在特征学习和降维中的应用。自编码器通过限制模型的表示能力或引入正则化项,迫使模型学习输入数据的有用特征。这些模型在生成模型和流形学习中展现了强大的能力,不仅在理论上具有重要意义,也在实际应用中取得了广泛的成功。

2025-04-01 10:06:16 1016

原创 Odoo/OpenERP 和 psql 命令行的快速参考总结

psql 命令行选项选项意义-a从脚本中响应所有输入-A取消表数据输出的对齐模式-c <查询>仅运行一个简单的查询,然后退出-d <数据库名>指定连接的数据库名(默认为当前登录用户名)-e回显发送到服务器的查询-f <文件名>执行文件中的查询,然后退出-h <主机>指定数据库服务器主机-l列出所有存在的数据库,然后退出-o <文件名>将查询输出发送到指定文件-p <端口>指定数据库服务器的端口-U <用户名>指定数据库用户-W强制提示输入密码-x开启扩展表格输出psql 内部命令命令意义。

2025-03-31 15:42:40 475

原创 Odoo 推式物流和拉式物流详解

在Odoo中,推式(Push)和拉式(Pull)物流是库存管理的核心机制,二者的配置和应用场景差异显著。

2025-03-31 09:00:00 1052

原创 深度学习 Deep Learning 第13章 线性因子模型

本章详细介绍了线性因子模型及其在概率建模中的应用。这些模型通过简单的线性解码器和潜在变量,为数据表示学习提供了基础。它们在信号分离、特征提取和数据表示学习等方面展现了强大的能力,不仅在理论上具有重要意义,也在实际应用中取得了广泛的成功。

2025-03-30 11:36:15 853

原创 深度学习 Deep Learning 第12章 深度学习的主流应用

本章展示了深度学习在多个领域的广泛应用和成功案例。通过硬件和软件的进步,特别是GPU的使用,神经网络的训练和推理效率得到了显著提升。模型压缩和动态结构等策略进一步提高了模型的实用性。在计算机视觉、语音识别和自然语言处理等领域,深度学习通过端到端的学习和注意力机制等创新方法,显著提高了性能。此外,推荐系统和知识表示等领域的应用也展示了深度学习的强大潜力。

2025-03-29 18:43:30 1138

原创 深度学习 Deep Learning 第11章 实用方法论

本章提供了机器学习项目从目标确定到模型优化的实用指南。通过明确性能指标、建立基线模型、评估数据需求、选择合适的超参数和应用有效的调试策略,可以系统地提升机器学习模型的性能。这些方法在实际应用中经过验证,能够帮助从业者高效地解决复杂问题。

2025-03-28 15:15:24 1141

原创 Odoo 18形式发票功能使用详细教程

在Odoo 18中,形式发票(Pro-Forma Invoice)作为预结算单据,为企业提供了订单确认前的关键沟通工具。该功能特别适用于需要多方审批、跨境贸易或定制化生产的场景,可降低60%的订单确认纠纷率。

2025-03-28 10:43:26 907

原创 Odoo 中的双向复制(BDR)

在企业资源规划(ERP)系统领域,企业越来越依赖 Odoo 来管理其运营。然而,随着运营规模的扩大,确保数据库后端的效率、可靠性和可扩展性变得至关重要。双向复制(Bi-Directional Replication, BDR)作为一种强大的工具应运而生,用于提升 Odoo 部署的性能和鲁棒性。

2025-03-27 14:54:42 953

原创 Odoo(OpenERP) CRM 模块介绍

产品销售过程以签约为界,可分为签约前和签约后两个阶段。签约前的工作,如发现客户、访问客户、推荐方案、价格谈判等,通常被称为“打单”;签约后的工作,如订单确认、备货、送货、收款、开票等,则属于销售事务处理。在 Odoo(OpenERP) 系统中,客户关系管理(CRM)模块主要负责管理打单工作,而销售事务工作由销售管理(Sale Management)模块处理。

2025-03-25 13:15:00 631

原创 深度学习 Deep Learning 第10章 序列建模:循环(RNN)和递归网络

本章全面介绍了循环神经网络及其变体在序列建模中的应用。通过理解RNN的基本原理、双向RNN、编码器-解码器架构、深度RNN和递归神经网络等技术,读者能够更好地处理序列数据,并应用于自然语言处理、语音识别等领域。这些内容为深入研究序列建模和开发高效的RNN模型提供了坚实的理论基础。

2025-03-25 09:15:00 1287

原创 深度学习 Deep Learning 第9章 卷积网络 CNN

数学卷积:定义为两个函数的积分操作,但在CNN中通常指交叉相关(Cross-Correlation)(不翻转核),因其实际效果相同且更高效。离散卷积:对图像和核的逐点乘积求和,公式为其中,I为输入,K为卷积核。卷积神经网络通过局部感知、参数共享和层次抽象,成为处理网格结构数据(如图像、语音)的核心架构。其设计受生物视觉系统启发,在保持计算高效性的同时,赋予模型强大的特征提取能力。随着自适应卷积、注意力机制等技术的融入,CNN正突破传统边界,推动计算机视觉向更复杂、动态的任务演进。

2025-03-24 14:33:51 1320

原创 如何在 Odoo 18 中创建搜索面板

Odoo 中的搜索面板允许用户查看预定义的类别(筛选器),并直接在视图中对其进行浏览。这些类别可以基于模型中的任何字段,包括多对一、多对多或选择字段,从而使用户能够轻松地基于这些字段筛选数据,而无需额外的点击操作。搜索面板是 Odoo 18 中一个非常有用的功能,尤其适用于处理大量数据的模块。通过使用搜索面板,您可以简化用户访问和筛选信息的方式,从而提升整体用户体验并使导航更加直观。在您的模块中实现搜索面板非常简单,借助 Odoo 提供的灵活性,您可以根据具体需求进行定制。

2025-03-24 10:51:24 574

原创 深度学习 Deep Learning 第8章 深度学习优化

本章全面介绍了深度学习中的优化技术,从基本的随机梯度下降到高级的自适应学习率算法和近似二阶方法。通过理解这些优化算法的原理和应用场景,读者能够更好地选择和应用合适的优化方法,提高深度学习模型的训练效率和性能。这些内容为深入研究深度学习算法的优化和应用提供了坚实的理论基础。深度模型优化是平衡计算效率、数值稳定性与泛化能力的艺术。自适应方法(如Adam)凭借对病态条件与噪声的鲁棒性成为主流,而二阶方法受限于计算开销。

2025-03-23 09:00:00 1057

原创 深度学习 Deep Learning 第7章 深度学习的正则化

正则化是深度学习中平衡模型容量与泛化能力的“艺术”。从简单的权重惩罚到复杂的流形约束,其本质均是通过引入先验知识或数据分布假设,引导模型学习更鲁棒的特征表示。实践中需根据任务特性灵活选择,并结合领域知识设计定制化策略,方能在过拟合与欠拟合间找到最优平衡。本章全面介绍了深度学习中的正则化技术,从参数范数惩罚到数据增强,再到噪声注入、早停、参数共享、稀疏表示、集成方法和Dropout等,展示了如何通过这些方法提高模型的泛化能力和鲁棒性。

2025-03-22 19:28:57 1002

原创 # 深度学习 Deep Learning 第6章 深度前馈网络

本章深入探讨了深度前馈网络的基本概念、设计决策、训练方法以及历史背景。深度前馈网络是深度学习的重要组成部分,广泛应用于商业领域,如物体识别和自然语言处理等。本章首先介绍了深度前馈网络的基本概念,包括其结构、功能和训练目标。接着,详细讨论了网络的设计决策,如隐藏层的设计、激活函数的选择以及网络架构的确定。然后,重点介绍了反向传播算法及其在计算梯度中的应用。最后,通过具体的学习算法示例,展示了这些理论在实际应用中的效果,并对深度前馈网络的历史发展和未来展望进行了总结。

2025-03-21 13:00:00 787

原创 如何在 Odoo 18 销售模块中设置产品与客户警告

通过 Odoo 18 的警告功能,企业可显著提升业务流程的规范性与安全性:·风险防控:实时拦截潜在问题订单,减少财务损失。·效率优化:通过提示关键信息,缩短用户决策时间。·灵活配置:支持按产品或客户定制化警告规则。

2025-03-21 09:15:00 1004

原创 深度学习 Deep Learning 第5章 机器学习基础

本章全面介绍了机器学习的基础知识,从学习算法的定义到具体任务类型,再到性能评估和经验来源。通过讨论容量、过拟合和欠拟合,以及超参数和验证集的使用,展示了如何设计和调整学习算法以提高其泛化能力。估计器、偏差和方差的概念进一步深化了对学习算法性能的理解。最大似然估计和贝叶斯统计提供了两种不同的参数估计方法,各有优劣。最后,通过具体的学习算法示例,如线性回归和逻辑回归,展示了这些理论在实际应用中的效果。这些内容为深入理解机器学习算法的设计和应用奠定了基础。

2025-03-20 10:49:09 927

原创 如何通过Odoo 18创建与配置服务器操作

服务器操作是Odoo实现业务流程自动化的核心工具,允许你在服务器端执行自动化任务,通常由按钮点击或自动化工作流等事件触发。这些操作使用 Python 编写,能够执行复杂的业务逻辑,从而增强 Odoo 系统的功能。本指南将详解服务器操作的创建流程,并通过实战案例演示字段同步功能的实现。

2025-03-20 09:15:00 1300

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除