- 博客(151)
- 收藏
- 关注
原创 远鼎Odoo 18社区版与企业版差异之二 费用管理模块
Odoo 18企业版与社区版在费用管理模块存在显著差异。企业版提供OCR收据扫描、移动端支持、工资单报销、多币种管理等高级功能,并与项目管理深度集成。其现代化界面、自动化审批流程和高级分析工具更适合中大型企业。社区版仅能满足基础费用跟踪需求,适合预算有限的小型企业。企业版通过自动化、集成能力和数据分析大幅提升财务管理效率,付费订阅可带来更全面的解决方案。
2025-06-13 15:16:58
385
原创 在Odoo 18的操作菜单中添加按钮
本文介绍了在Odoo 18中为销售订单模型添加操作菜单按钮的方法。通过继承sale.order模型定义Python方法、创建服务器操作XML记录,可实现一键更新订单日期功能。该功能展现了Odoo框架的灵活性和扩展性,能有效提升用户操作效率,简化重复性工作。实现过程包括三个主要步骤:模型继承、服务器操作定义和功能测试,最终在表单视图操作菜单中新增"Update Order Date"选项,点击后自动将选定订单的日期更新为当前日期。这种定制化开发方式体现了Odoo对业务需求的高度适应性。
2025-06-13 11:09:35
777
原创 Odoo 企业版和社区版区别系列文章之一 日历模块 Calendar
Odoo 18日历模块社区版与企业版的6大关键差异:1)企业版支持与Google、Outlook等第三方日历同步;2)企业版提供更高级的界面自定义和颜色编码功能;3)企业版具备多重提醒和SMS通知等高级通知系统;4)企业版拥有更细粒度的访问控制和数据安全功能;5)企业版独有的团队视图功能便于集体日程管理;6)企业版与电子邮件客户端的深度集成。虽然两个版本都提供基本的日历管理功能,但企业版更适合有复杂日程协作需求的大型组织,而社区版则满足简单日程安排需求。
2025-06-12 17:59:59
612
原创 Odoo 18 库存中管理最低安全库存规则(再订货规则)
Odoo 18的最低库存规则功能帮助企业自动化补货流程,确保库存维持在最佳水平。通过设置最小/最大库存量和触发方式(手动/自动),系统会在库存低于阈值时生成采购订单。配置步骤包括:启用产品库存跟踪、设置补货规则(含供应商、仓库位置等参数),并选择补货方式(采购/生产)。自动补货可根据销售情况实时调整订单量,支持按倍数采购。该功能有效预防缺货和库存积压,提升供应链效率,适用于口罩等需精准管控的物资。操作流程涵盖从规则配置到订单生成的完整闭环管理。
2025-06-12 16:04:20
814
原创 在 Odoo 18 中使用 Mixin 类扩展模型
摘要:Odoo 18中的Mixin类是一种强大的扩展机制,通过继承方式为模型添加可复用功能而不修改原始模型结构。本文介绍了Mixin的概念和实现方法,包括创建抽象Mixin类、扩展现有模型的具体步骤(如为res.partner模型添加日志功能),以及Mixin在代码复用、关注点分离和可扩展性方面的优势。文章还强调了使用时的注意事项,如使用AbstractModel定义、避免方法冲突等,指出Mixin类是保持代码整洁同时增强功能的有效工具,有助于提升开发效率和维护性。
2025-06-10 16:03:55
508
原创 Odoo 18中配置客户端动作(Client Action)的代码实例
以下是关于在Odoo 18中配置客户端动作(Client Action)的摘要: 在Odoo 18中,客户端动作是通过前端逻辑实现用户交互的核心机制,需结合JavaScript、XML和OWL组件完成配置。主要步骤包括: 1. **定义XML菜单**:在`views`目录创建文件,通过`ir.actions.client`模型定义动作(含唯一`tag`标识、显示方式`target`等参数),并关联菜单项。 2. **实现前端组件**:在`static/src/js`目录编写JS代码,继承OW
2025-06-10 11:48:58
310
原创 Odoo 19 路线图(新功能)
Odoo 19 路线图是Odoo官方针对下一版本的发布计划,将在自动化、合规性、用户体验、碳排放报告及本地化等领域推出超过16项新功能。本路线图详细阐述了Odoo 19如何在过往版本基础上进一步提升,助力企业优化销售、财务、运营及客户管理流程。
2025-06-06 15:06:48
1027
原创 Odoo 18 定期发送电子邮件报告(如KPI)配置指南
Odoo 18的定期摘要电子邮件功能可自动向管理者发送业务关键数据,提升决策效率。配置路径为:设置→电子邮件→摘要邮件,用户可自定义发送周期(日/周/月/季)、KPI指标(销售、财务、CRM等模块数据)和收件人列表。系统支持手动发送测试邮件,所有发送记录可追踪查看。该功能通过定期同步跨部门信息,促进业务透明度和沟通效率,帮助用户无需登录系统即可掌握最新运营动态,实现数据驱动的管理决策。
2025-06-04 16:06:36
859
原创 如何在 Odoo 18 中创建 PDF 报告
这篇指南详细介绍了如何在Odoo 18中创建自定义PDF报告。主要内容包括: 介绍Qweb模板引擎的功能特性及其在报告生成中的优势 分步说明创建过程: 创建报告动作XML文件,定义关键参数如模型、报告类型等 设计Qweb模板XML文件,控制报告布局和字段显示 模块文件注册注意事项 强调核心要点:通过报告动作绑定数据源,使用Qweb模板控制输出格式,二者配合实现灵活的报告定制。 该方案适用于各类业务数据展示需求,能显著提升报表生成效率和数据呈现质量。
2025-05-29 10:12:27
1156
原创 如何在Odoo 18中高效管理设备维护请求
Odoo 18维护模块为企业提供高效设备管理方案,取代传统低效的纸质维护方式。该模块支持设备全生命周期跟踪、自动化维护请求处理及数据分析优化。主要功能包括:1)通过维护团队界面管理任务分配与进度跟踪;2)多种视图展示维护请求(看板/日历/图表等);3)详细记录维护请求信息与处理日志;4)智能计算设备故障间隔时间并预测下次维护日期。该数字化方案能显著降低设备停机时间,提高运营效率,节省维护成本,特别适合制造业和资产密集型行业使用。
2025-05-26 10:52:53
908
原创 在Odoo 18中创建进度条指南
在Odoo 18中创建进度条组件涉及模板定义、样式设计、JavaScript逻辑实现以及表单视图中的应用。首先,通过XML文件定义进度条模板,并使用CSS类控制其外观。接着,使用JavaScript编写逻辑,动态更新进度条的宽度和百分比显示。最后,在表单视图中通过指定字段的widget属性来应用该组件。此进度条组件支持浮点数和整数字段类型,适用于项目里程碑等场景,提供直观的任务完成度展示,提升用户体验和项目监控效率。
2025-05-19 18:19:58
333
原创 在 Odoo 18 表单视图中使用 JS 类的方法
Odoo 18 采用了现代化的 JavaScript 框架——Odoo Web Library (OWL),基于组件化架构设计运行。这一框架显著增强了 Odoo 的功能,支持创建自定义小部件、表单视图管理、自定义操作、前端功能、API 调用、事件处理等。在 JavaScript 小部件、模板和视图的上下文中,我们主要使用js_class作为关键属性,来定义和扩展系统在用户界面方面的行为。js_class使开发人员能够将 JavaScript 类链接到 XML 元素,从而在 Odoo 中动态启用自定义交互。
2025-05-16 13:43:13
950
原创 Odoo 18 安全组与访问权限管理指南
《Odoo 18 安全组与访问权限管理指南》详细介绍了如何在自定义模块中管理安全组和访问权限。首先,在模块内创建 security 文件夹,用于存放安全配置文件。接着,通过 ir.model.access.csv 文件定义模型的访问权限,包括读取、写入、创建和删除操作,并通过 __manifest__.py 文件应用这些规则。此外,通过 XML 文件定义安全组,并在 Odoo 界面中为用户分配相应的安全组,以限制其对特定模型的访问。最后,通过验证权限效果,确保只有授权用户能够访问和操作相关数据。
2025-05-12 10:51:37
1348
原创 机器学习实操 附录D TensorFlow 函数及计算图
附录D深入探讨了TensorFlow函数(TF functions)及其生成的计算图。章节详细介绍了TF函数的多态性、具体函数(concrete functions)的概念、如何探索函数定义和图结构,以及如何处理变量和其他资源。此外,还讨论了如何在Keras中使用TF函数,以及如何通过AutoGraph捕获控制流。
2025-05-11 13:30:00
689
原创 机器学习实操 附录C TensorFlow支持的特殊数据结构
附录C通过介绍TensorFlow中的特殊数据结构,帮助读者在处理复杂数据时选择合适的数据结构。非规则张量和稀疏张量在处理序列数据和高维稀疏数据时表现出色,张量数组在动态模型中非常有用,集合和队列则在数据处理和管道建设中提供了额外的灵活性。这些数据结构在实际应用中可以显著提高效率和性能。
2025-05-11 10:00:00
582
原创 # 深度学习实操 附录B 深入解析 tensorflow 自动微分
附录B通过详细讲解自动微分的原理和实现,帮助读者理解TensorFlow如何高效计算梯度。反向模式自动微分在处理大规模神经网络时表现出色,能够显著提高训练效率。通过对比手动微分和有限差分近似,读者可以更深入地理解自动微分的优势和应用场景。
2025-05-10 13:15:00
462
原创 # 机器学习实操 附录A 机器学习项目任务清单
附录A提供了一个结构化的机器学习项目清单,帮助读者系统地完成从问题定义到模型部署的全过程。通过遵循这些步骤,读者可以确保项目的每个阶段都经过充分考虑和实施,提高项目的成功率和效率。
2025-05-10 10:00:00
990
原创 机器学习实操 第二部分 第19章 大规模训练和部署 TensorFlow 模型
通过本章的学习,读者将掌握如何将TensorFlow模型部署到生产环境,包括使用TF Serving和Vertex AI进行模型服务,以及在移动、嵌入式设备和网页中运行模型。此外,还将学习如何利用GPU加速计算,并在多设备和多服务器上进行分布式训练。这些技能将帮助读者在实际项目中高效地部署和管理机器学习模型。
2025-05-09 13:00:00
826
原创 机器学习实操 第二部分 第18章 强化学习
通过本章的学习,读者将掌握强化学习的基本原理和实现方法。内容涵盖了从基本概念到高级算法的广泛主题,包括策略梯度、Q学习、深度Q网络及其变体。这些知识将帮助读者在游戏、机器人控制、推荐系统等领域构建创新的解决方案。尽管强化学习具有挑战性,但其在实际应用中的潜力巨大,值得深入探索。
2025-05-09 09:00:00
1472
原创 机器学习实操 第二部分 神经网路和深度学习 第17章 编码器、生成对抗网络和扩散模型
通过本章的学习,读者将掌握自编码器、生成对抗网络(GANs)和扩散模型的基本原理和实现方法。内容涵盖了这些模型的架构、训练方法、面临的挑战以及实际应用。这些知识将帮助读者在无监督学习和生成模型领域构建高效、创新的解决方案。
2025-05-08 14:15:00
710
原创 机器学习实操 第15章 使用循环神经网络(RNNs)和卷积神经网络(CNNs)处理序列
第15章探讨了循环神经网络(RNNs)及其在序列数据处理中的应用。RNNs能够分析时间序列数据,例如网站的每日活跃用户数、城市每小时气温、家庭每日电力消耗等,并利用过去的模式预测未来。RNNs适用于处理任意长度的序列数据,广泛应用于自然语言处理、语音识别、时间序列预测等领域。循环神经元和层RNN架构序列到序列模型训练RNN时间序列预测处理长序列1D卷积层和WaveNet中文:RNNs能够分析时间序列数据,例如网站的每日活跃用户数、城市每小时气温、家庭每日电力消耗等,并利用过去的模式预测未来。
2025-05-08 09:00:00
963
原创 机器学习实操 第二部分 神经网路和深度学习 第14章 使用卷积神经网络进行深度计算机视觉
通过本章的学习,读者将掌握卷积神经网络(CNNs)的基本原理和实现方法。内容涵盖了CNN的构建块、经典架构、目标检测和语义分割等高级应用,以及如何使用Keras实现CNN模型和进行迁移学习。这些知识将帮助读者在计算机视觉领域构建高效、准确的模型。
2025-05-07 14:35:49
1163
原创 Odoo 18 中的继承类型详解-一篇文章搞懂 odoo的继承机制
# Odoo 18 中的继承类型详解 在 Odoo 中,继承机制允许开发者无需修改核心系统即可扩展、修改或定制现有模型、视图和功能。这种模块化设计确保自定义内容在系统升级后仍可维护。Odoo 18 主要提供三种继承类型:**Python 继承**、**模型继承**和**视图继承**,每种继承类型服务于特定场景,使 Odoo 能够灵活适配各类业务需求。
2025-05-07 10:01:39
933
原创 机器学习实操 第二部分 神经网路和深度学习 第13章 使用TensorFlow加载和预处理数据
第13章深入探讨了如何使用TensorFlow加载和预处理数据。本章首先介绍了`tf.data` API,它能够高效地加载和预处理大规模数据集,支持并行文件读取、数据打乱、批量处理等功能。接着,讨论了TFRecord格式,这是一种高效的二进制存储格式,适合存储大量数据。此外,还介绍了Keras预处理层,这些层可以直接嵌入到模型中,实现在训练和推理过程中对数据的自动预处理。最后,探讨了TensorFlow Datasets(TFDS)和TensorFlow Hub等工具,它们提供了便捷的数据加载和预处理功能。
2025-05-06 11:23:49
1001
原创 # 机器学习实操 第二部分 神经网络和深度学习 第12章 自定义模型和训练循环
第12章深入探讨了如何使用TensorFlow的低级API来自定义模型和训练算法。本章首先介绍了TensorFlow的核心功能和架构,然后详细讲解了如何使用TensorFlow的低级API来创建自定义的损失函数、激活函数、初始化器、正则化器、权重约束、度量和层。此外,还介绍了如何使用TensorFlow的自动微分功能来计算梯度,并构建自定义的训练循环。通过这些内容,读者将能够更深入地理解TensorFlow的工作原理,并掌握如何在需要时自定义和优化模型和训练过程。
2025-05-05 10:00:00
858
原创 机器学习实操 第二部分 神经网路和深度学习 第11章 训练深度神经网络
通过本章的学习,读者将掌握训练深度神经网络的核心技术和方法。这些内容包括解决梯度消失和爆炸问题的策略、权重初始化、激活函数选择、批量归一化、迁移学习、优化器选择和正则化技术。这些技术能够显著提高深度神经网络的训练效率和模型性能,使其能够处理复杂的机器学习任务。
2025-05-04 10:00:00
2001
原创 # 机器学习实操 第二部分 神经网路和深度学习 第10章 使用Keras引入人工神经网络ANN
通过本章的学习,读者将掌握人工神经网络的核心概念和应用方法。这些内容包括ANN的历史、感知器和MLP的原理、反向传播算法、Keras的使用方法(序贯API、函数式API和子类化API),以及模型的保存、加载和超参数调优。Keras作为TensorFlow的高层API,提供了简单而强大的工具来构建和训练神经网络,适用于各种机器学习任务。
2025-05-03 10:45:00
685
原创 机器学习实操 第一部分 机器学习基础 第9章 无监督学习技术
通过本章的学习,读者将掌握无监督学习技术的核心概念和应用方法。这些内容包括聚类算法(如k-means和DBSCAN)、异常检测和密度估计,以及高斯混合模型的应用。无监督学习技术能够从大量未标记数据中提取有价值的信息,提高模型的性能和效率。这些技术在数据挖掘、模式识别和机器学习中具有广泛的应用前景。
2025-05-02 10:30:00
463
原创 机器学习实操 第一部分 机器学习基础 第8章 降维技术
通过本章的学习,读者将掌握降维技术的核心概念和应用方法。这些内容包括维度灾难的原理、降维的主要方法(投影和流形学习),以及PCA、随机投影和LLE等具体技术。降维技术不仅能够提升模型的训练效率,还能帮助发现数据中的隐藏模式,提高模型的性能和可解释性。这些技术在处理高维数据时尤为重要,是机器学习中的关键工具。
2025-05-01 10:45:00
2279
原创 机器学习实操 第一部分 机器学习基础 第7章 集成学习与随机森林
通过本章的学习,读者将掌握集成学习的核心概念和应用方法。这些内容包括投票分类器、Bagging和Pasting集成、随机森林、Boosting以及Stacking集成。这些方法能够有效提升模型的性能,降低过拟合风险,提高泛化能力。集成学习方法的多样性和灵活性使其成为许多机器学习任务中的首选方案。
2025-04-30 15:42:08
717
原创 机器学习实操 第一部分 机器学习基础 第6章 决策树
通过本章的学习,读者将掌握决策树的核心概念和应用方法。这些内容包括决策树的训练、可视化、预测过程,以及如何通过正则化技术来避免过拟合。此外,本章还介绍了决策树在分类和回归任务中的应用,以及其优缺点。决策树的透明性和灵活性使其成为许多实际应用中的首选算法。
2025-04-29 15:43:48
889
原创 机器学习实操 第一部分 机器学习基础 第5章 支持向量机(SVM)
通过本章的学习,读者将掌握支持向量机的核心概念和应用方法。这些内容包括线性SVM分类、软间隔分类、非线性SVM分类(通过多项式核和高斯RBF核)、SVM回归以及核技巧的应用。这些技能使读者能够使用SVM解决各种实际问题,包括分类和回归任务。
2025-04-29 09:44:39
1280
原创 Odoo 18 中计划、待办、项目管理模块解析
项目模块是核心框架,管理复杂任务的结构与协作;待办模块是执行终端,确保个人与团队任务的高效落地;计划模块是调度中枢,优化资源与时间的全局配置。三者通过数据互通(如任务状态、时间线、资源分配)形成闭环,覆盖从战略规划到日常执行的全流程,适用于敏捷开发、客户交付等多种场景
2025-04-28 10:31:53
906
原创 机器学习实操 第一部分 机器学习基础 第4章 训练模型
第4章深入探讨了训练模型的关键技术和算法。从线性回归模型的经典训练方法(如正规方程和梯度下降)到多项式回归和正则化技术,本章提供了丰富的理论和实践知识。此外,还介绍了逻辑回归和Softmax回归,用于解决分类问题。通过这些内容,读者将掌握如何选择合适的模型、训练算法和超参数,以应对各种机器学习任务。
2025-04-28 09:23:49
760
原创 机器学习实操 第一部分 机器学习基础 第3章 训练分类器
通过本章的学习,读者将掌握分类任务的核心概念和实践技巧。这些内容包括如何训练二元分类器和多类分类器,如何评估分类器的性能,以及如何通过错误分析和数据增强来改进模型。这些技能对于实际应用中的分类问题至关重要。
2025-04-27 09:15:00
1518
原创 机器学习实操 第一部分 机器学习基础 第二章 完整机器学习项目实战
通过本章的学习,读者将掌握机器学习项目从启动到部署的完整流程。这些知识包括数据获取、探索、预处理、模型选择与训练、模型调优、最终评估以及系统上线和维护等关键步骤。这些技能对于实际应用中的机器学习项目至关重要。
2025-04-26 11:00:00
1943
原创 机器学习实操 第一部分 机器学习基础 第一章 机器学习全景
通过本章的学习,读者将掌握机器学习的核心概念、主要类型和应用场景。这些基础知识为后续深入学习机器学习算法和实际应用奠定了基础。此外,了解机器学习项目的工作流程和主要挑战,有助于读者在实际项目中更好地设计和优化机器学习系统。
2025-04-25 09:00:00
1481
原创 如何在 Odoo 18 中配置自动化动作
Odoo 18 的自动化动作功能通过自动化常规任务和简化工作流,为企业提升效率提供了强大工具。通过设置特定的触发条件和动作,用户可节省时间并减少人为错误。Odoo 借助服务器动作(Server Actions)和 XML 配置,支持根据企业独特需求定制自动化逻辑,使团队能够聚焦核心业务,推动增长和创新,而非困于重复性工作。通过合理配置自动化动作,企业可将日常运营效率提升40%以上。总体而言,这些功能助力企业实现更流畅、高效的运营。
2025-04-24 09:43:50
1370
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人