- 博客(4)
- 收藏
- 关注
原创 CNN之VGG详述
VGG原理VGG16相比AlexNet的一个改进是采用连续的几个3x3的卷积核代替AlexNet中的较大卷积核(11x11,7x7,5x5)。对于给定的感受野(与输出有关的输入图片的局部大小),采用堆积的小卷积核是优于采用大的卷积核,因为多层非线性层可以增加网络深度来保证学习更复杂的模式,而且代价还比较小(参数更少)。简单来说,在VGG中,使用了3个3x3卷积核来代替7x7卷积核,使用了2个3x3卷积核来代替5*5卷积核,这样做的主要目的是在保证具有相同感知野的条件下,提升了网络的深度,在一定.
2020-08-27 22:59:16
1770
原创 CNN之AlexNet网络详述
AlexNet首次在大规模图像数据集实现了深层卷积神经网络结构,点燃了深度学习这把火。其在ImageNet LSVRC-2012目标识别的top-5 error为15.3%,同期第二名仅为26.2%,碾压其他传统的hand-craft 特征方法,使得计算机视觉从业者从繁重的特征工程中解脱出来,转向思考能够从数据中自动提取需要的特征,做到数据驱动。得益于GPU计算性能的提升以及大规模数据集的出现,自此后每年的ImageNet LSVRC挑战赛都被深度学习模型霸占着榜首。1.创新点:训练出当前最大规模的
2020-08-27 22:50:02
474
原创 数据建模步骤
数据建模,通俗地说,就是通过建立数据科学模型的手段解决现实问题的过程。数据建模也可以称为数据科学项目的过程,并且这个过程是周期性循环的。数据建模的具体过程可分为六大步骤,如下图所示:一、制订目标制订目标的前提是理解业务,明确要解决的商业现实问题是什么?如:电商平台用户评价的情绪分类。二、数据理解与准备基于要解决的现实问题,理解和准备数据,一般需要解决以下问题:...
2020-05-04 16:03:14
7181
原创 SVD原理
SVD为机器学习中会用到降维方法SVD奇异值分解作为一个很基本的算法,在很多机器学习算法中都有它的身影。SVD奇异值分解是线性代数中一种重要的矩阵分解,是矩阵分析中正规矩阵酉对角化的推广。只需要线性代数知识就可以理解SVD算法,简单实用,分解出的矩阵解释性不强,但不影响它的使用,因此值得研究。SVD在信号处理、统计学、机器学习等领域有重要应用,比如:LSA(隐性语义分析)、推荐系...
2020-05-04 15:49:14
2082
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅