20210606 每日一题 一和零

题目

题目链接

代码

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {

    }
};

方法一:三维动态规划

分析

题目是一个多维背包问题,把总共的 0 0 0 1 1 1 的个数视为背包的容量,每一个字符串视为装进背包的物品,因此需要使用三维动态规划求解,三个维度分别是字符串数量 i i i 0 0 0 的容量 j j j 1 1 1 的容量 k k k。因此,设定三维数组 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 表示在前 i i i 个字符串中,使用最多不超过 j j j 0 0 0 k k k 1 1 1 的情况下可以得到的字符串的最大数量,三维数组 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 起始值 0 0 0。假设第 i i i 个字符串包含有 x x x 0 0 0 y y y 1 1 1,对第 i i i 个字符串有选和不选两种情况:

  • 如果 j ≥ x   &   k ≥ y j \geq x\ \&\ k \geq y jx & ky 时,假设第 i i i 个字符串不在最大子集中时,则有 d p [ i ] [ j ] [ k ] = d p [ i − 1 ] [ j ] [ k ] dp[i][j][k]=dp[i-1][j][k] dp[i][j][k]=dp[i1][j][k];假设第 i i i 个字符串在最大子集中时,则有 d p [ i ] [ j ] [ k ] = d p [ i − 1 ] [ j − x ] [ k − y ] dp[i][j][k]=dp[i-1][j-x][k-y] dp[i][j][k]=dp[i1][jx][ky] d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 应取两者中较大的一个。
  • 如果 j < x   ∣   k < y j < x\ | \ k < y j<x  k<y 时,则不能选第 i i i 个字符串,所包含的 0 0 0 1 1 1 数量已经超过限定值,第 i i i 个字符串不在最大子集中,因此 d p [ i ] [ j ] [ k ] = d p [ i − 1 ] [ j ] [ k ] dp[i][j][k]=dp[i-1][j][k] dp[i][j][k]=dp[i1][j][k]

综上所述 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 的状态转移方程可表示为:
d p [ i ] [ j ] [ k ] = { m a x ( d p [ i − 1 ] [ j ] [ k ] , d p [ i − 1 ] [ j − x ] [ k − y ] + 1 ) i f   j ≥ x   &   k ≥ y d p [ i − 1 ] [ j ] [ k ] i f   j < x   ∣   k < y dp[i][j][k] = \begin{cases} max(dp[i-1][j][k], dp[i-1][j-x][k-y]+1) &if\ j \geq x\ \&\ k \geq y\\ dp[i-1][j][k] &if\ j < x\ | \ k < y \end{cases} dp[i][j][k]={max(dp[i1][j][k],dp[i1][jx][ky]+1)dp[i1][j][k]if jx & kyif j<x  k<y d p [ l ] [ m ] [ n ] dp[l][m][n] dp[l][m][n] 即为问题答案。
为使程序简洁,我们将对字符串中 0 0 0 1 1 1 数量计数部分单独提出作为函数 c o u n t N u m b e r countNumber countNumber

代码

class Solution {
private:
    vector<int> countNumber(string& str) {
        vector<int> temp (2, 0);
        for(auto s : str) {
            temp[s - '0']++;
        }
        return temp;
    }
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        int len = strs.size();
        vector<vector<vector<int>>> dp (len + 1, vector<vector<int>> (m + 1, vector<int>(n + 1, 0)));
        for(int i = 1; i <= len; ++i) {
            vector<int> number = countNumber(strs[i - 1]);
            for(int j = 0; j <= m; ++j) {
                for(int k = 0; k <= n; ++k) {
                    if (j >= number[0] && k >= number[1]) {
                        dp[i][j][k] = max(dp[i - 1][j][k], dp[i - 1][j - number[0]][k - number[1]] + 1);
                    } else {
                        dp[i][j][k] = dp[i - 1][j][k];
                    }
                }
            }
        }
        return dp[len][m][n];
    }
};

复杂度分析

  • 时间复杂度: O ( l m n + L ) O(lmn + L) O(lmn+L),其中 l l l 是字符串数量, m m m n n n 分别是 0 0 0 1 1 1 的最大容量, L L L 是所有字符串的长度之和。
  • 空间复杂度: O ( l m n ) O(lmn) O(lmn),其中 l l l 是字符串数量, m m m n n n 分别是 0 0 0 1 1 1 的最大容量,实现动态规划需要创建 ( l + 1 ) × ( m + 1 ) × ( n + 1 ) (l+1)\times(m+1)\times(n+1) (l+1)×(m+1)×(n+1) 的三维数组 d p dp dp

方法二:二维动态规划

分析

根据方法一的状态转移方程可知,更新 d p [ i ] [ ] [ ] dp[i][][] dp[i][][] 的每个元素值时,只依赖于 d p [ i − 1 ] [ ] [ ] dp[i-1][][] dp[i1][][] 的元素值。因此,可以使用一维滚动数组 d p [ j ] [ k ] dp[j][k] dp[j][k] 来替代三维数组 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 对方法一进行空间上的优化。 d p [ j ] [ k ] dp[j][k] dp[j][k] 的状态转移方程可表示为:
d p [ j ] [ k ] = m a x ( d p [ j ] [ k ] , d p [ j − x ] [ k − y ] + 1 ) dp[j][k] = max(dp[j][k], dp[j-x][k-y]+1) dp[j][k]=max(dp[j][k],dp[jx][ky]+1) d p [ m ] [ n ] dp[m][n] dp[m][n] 即为问题答案。

要点

根据方法一的状态转移方程,对于 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 元素值的更新,只与 d p [ i − 1 ] [ a ] [ b ]   ( a ≤ j ,   b ≤ k ) dp[i-1][a][b] \ (a \leq j,\ b \leq k) dp[i1][a][b] (aj, bk)相关,实现时, j j j, k k k 所在的内层循环需采用倒序遍历的方式更新元素值。

代码

class Solution {
private:
    vector<int> countNumber(string& str) {
        vector<int> temp (2, 0);
        for(auto s : str) {
            temp[s - '0']++;
        }
        return temp;
    }
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        int len = strs.size();
        vector<vector<int>> dp (m + 1, vector<int>(n + 1, 0));
        for(int i = 0; i < len; ++i) {
            vector<int> number = countNumber(strs[i]);
            for(int j = m; j >= 0; --j) {
                for(int k = n; k >= 0; --k) {
                    if (j >= number[0] && k >= number[1]) {
                        dp[j][k] = max(dp[j][k], dp[j - number[0]][k - number[1]] + 1);
                    }
                }
            }
        }
        return dp[m][n];
    }
};

复杂度分析

  • 时间复杂度: O ( l m n + L ) O(lmn + L) O(lmn+L),其中 l l l 是字符串数量, m m m n n n 分别是 0 0 0 1 1 1 的最大容量, L L L 是所有字符串的长度之和。
  • 空间复杂度: O ( m n ) O(mn) O(mn),其中 m m m n n n 分别是 0 0 0 1 1 1 的最大容量,实现动态规划需要创建 ( m + 1 ) × ( n + 1 ) (m+1)\times(n+1) (m+1)×(n+1) 的二位滚动数组 d p dp dp

优化

  • 可以将内部两层循环语句 f o r for for 和判定语句 i f if if 进行合并,以减少无用计算量。
for(int j = m; j >= zeros; --j) {
	for(int k = n; k >= ones; --k) {
		dp[j][k] = max(dp[j][k], dp[j - zeros][k - ones] + 1);
	}
}
  • 可以使用两个 i n t int int 值分别存储当前字符串 s t r s [ i ] strs[i] strs[i] 0 0 0 1 1 1 的数量,以减少对 v e c t o r vector vector 的查找。
vector<int> number = countNumber(strs[i]);
int zeros = number[0], ones = number[1];

代码

class Solution {
private:
    vector<int> countNumber(string& str) {
        vector<int> temp (2, 0);
        for(auto s : str) {
            temp[s - '0']++;
        }
        return temp;
    }
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        int len = strs.size();
        vector<vector<int>> dp (m + 1, vector<int>(n + 1, 0));
        for(int i = 0; i < len; ++i) {
            vector<int> number = countNumber(strs[i]);
            int zeros = number[0], ones = number[1];
            for(int j = m; j >= zeros; --j) {
                for(int k = n; k >= ones; --k) {
                    dp[j][k] = max(dp[j][k], dp[j - zeros][k - ones] + 1);
                }
            }
        }
        return dp[m][n];
    }
};

拓展

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值