题目:To brighten up the gala dinner of the IOI'98 we have a set of N (10 <= N <= 100) colored lamps numbered from 1 to N.
The lamps are connected to four buttons:
- Button 1: When this button is pressed, all the lamps change their state: those that are ON are turned OFF and those that are OFF are turned ON.
- Button 2: Changes the state of all the odd numbered lamps.
- Button 3: Changes the state of all the even numbered lamps.
- Button 4: Changes the state of the lamps whose number is of the form 3xK+1 (with K>=0), i.e., 1,4,7,...
A counter C records the total number of button presses.
When the party starts, all the lamps are ON and the counter C is set to zero.
You are given the value of counter C (0 <= C <= 10000) and the final state of some of the lamps after some operations have been executed. Write a program to determine all the possible final configurations of the N lamps that are consistent with the given information, without repetitions.
PROGRAM NAME: lamps
INPUT FORMAT
No lamp will be listed twice in the input.
Line 1: | N |
Line 2: | Final value of C |
Line 3: | Some lamp numbers ON in the final configuration, separated by one space and terminated by the integer -1. |
Line 4: | Some lamp numbers OFF in the final configuration, separated by one space and terminated by the integer -1. |
SAMPLE INPUT (file lamps.in)
10 1 -1 7 -1
In this case, there are 10 lamps and only one button has been pressed. Lamp 7 is OFF in the final configuration.
OUTPUT FORMAT
Lines with all the possible final configurations (without repetitions) of all the lamps. Each line has N characters, where the first character represents the state of lamp 1 and the last character represents the state of lamp N. A 0 (zero) stands for a lamp that is OFF, and a 1 (one) stands for a lamp that is ON. The lines must be ordered from least to largest (as binary numbers).
If there are no possible configurations, output a single line with the single word `IMPOSSIBLE'
SAMPLE OUTPUT (file lamps.out)
0000000000 0101010101 0110110110In this case, there are three possible final configurations:
- All lamps are OFF
- Lamps 1, 4, 7, 10 are OFF and lamps 2, 3, 5, 6, 8, 9 are ON.
- Lamps 1, 3, 5, 7, 9 are OFF and lamps 2, 4, 6, 8, 10 are ON.
/*
ID: gjj50201
LANG: C++
TASK: lamps
*/
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<cmath>
#include<vector>
#include<algorithm>
#define b1 63
#define b2 21
#define b3 42
#define b4 9
using namespace std;
int N,C;
int light[64];
int mark[6];
vector <string> ans;
//搜索c步能达到的所有可能状态
void dfs(int k, int steps){
if(!steps){
light[k] = 1;
return;
}
int t;
t = k^b1; dfs(t,steps-1);
t = k^b2; dfs(t,steps-1);
t = k^b3; dfs(t,steps-1);
t = k^b4; dfs(t,steps-1);
}
//检查是否满足题目要求的限制条件
int ok(int k){
for(int i=0;i<6;i++)
if( mark[i]!=-1 && (k&(1<<i)) != (mark[i]<<i))
return 0;
return 1;
}
//扩展成需要的N位串
string convert(int k){
int ans[6];
//把十进制转化成二进制,并且相应位子上的数字存起来
for(int i=0;i<6;i++)
ans[i] = (k & (1<<i)) / (1<<i);
string result = "";
for(int i = 0; i<N ;i++)
result += ans[i%6] + '0';
return result;
}
int main(){
freopen("lamps.in","r",stdin);
freopen("lamps.out","w",stdout);
cin>>N>>C;
while(C>4) C-=2;
for(int i=0;i<6;i++)
mark[i] = -1;
int tmp;
cin>>tmp;
while(tmp!=-1) {mark[(tmp-1)%6] = 1; cin>>tmp;}
cin>>tmp;
while(tmp!=-1) {mark[(tmp-1)%6] = 0; cin>>tmp;}
dfs(63,C);
for(int i=0;i<64;i++)
if(light[i] && ok(i))
ans.push_back(convert(i));
if(!ans.size())
cout<<"IMPOSSIBLE"<<endl;
else{
sort(ans.begin(),ans.end());
vector<string>::iterator it;
for(it = ans.begin();it!=ans.end();it++)
cout<<*it<<endl;
}
return 0;
}