Day 3: 大模型推理优化与部署
学习目标
- 理解大模型推理的基本原理和挑战
- 掌握推理优化技术,包括量化、剪枝和知识蒸馏
- 学习大模型部署的不同方式和适用场景
- 了解大模型应用的架构设计原则
- 掌握大模型应用的监控和维护方法
1. 大模型推理基础
1.1 推理过程概述
推理(Inference)是指使用训练好的模型对新输入数据进行预测的过程。对于大型语言模型,推理通常包括以下步骤:
1. 输入处理:
- 文本分词
- 转换为模型输入格式(如token ID)
- 添加特殊标记(如[CLS], [SEP]等)
2. 前向传播:
- 通过模型的各层计算
- 对于自回归模型(如GPT),逐token生成
- 对于编码器模型(如BERT),一次性处理整个输入
3. 输出处理:
- 解码模型输出(如token ID转回文本)
- 后处理(如过滤不适当内容、格式化等)
1.2 推理挑战
大模型推理面临的主要挑战:
计算资源需求:
- 大量参数(数十亿到数千亿)
- 高内存占用
- 高计算复杂度
延迟要求:
- 实时应用需要低延迟
- 自回归生成模型的累积延迟
吞吐量需求:
- 服务多用户并发请求
- 批处理效率
部署环境限制:
- 云服务器vs边缘设备
- GPU可用性
- 带宽和网络延迟
1.3 推理优化目标
推理优化通常围绕以下目标:
减少计算复杂度:
- 降低FLOPs(浮点运算次数)
- 减少内存访问
减小模型大小:
- 降低内存占用
- 减少存储需求
- 提高缓存命中率
降低延迟:
- 减少端到端响应时间
- 提高交互体验
提高吞吐量:
- 增加每秒处理的请求数
- 提高资源利用率
保持准确性:
- 在优化过程中尽量保持模型性能
- 在速度和准确性之间找到平衡
2. 推理优化技术
2.1 量化技术
量化是将模型参数从高精度(如FP32)转换为低精度(如INT8、FP16)的过程,可以显著减小模型大小和加速推理。
量化类型:
-
训练后量化(Post-Training Quantization, PTQ):
- 在训练完成后应用
- 不需要重新训练
- 实现简单但可能导致精度损失
-
量化感知训练(Quantization-Aware Training, QAT):
- 在训练过程中模拟量化效果
- 模型可以适应量化带来的精度损失
- 通常比PTQ精度更高但需要重新训练
-
动态量化(Dynamic Quantization):
- 权重在离线时量化
- 激活值在运行时量化
- 平衡速度和精度
-
静态量化(Static Quantization):
- 权重和激活值都在离线时量化
- 需要校准数据
- 推理速度最快
使用PyTorch进行量化:
import torch
# 加载预训练模型
model = torch.load("fine_tuned_model.pth")
# 动态量化(仅权重)
quantized_model = torch.quantization.quantize_dynamic(
model, # 原始模型
{torch.nn.Linear}, # 要量化的层类型
dtype=torch.qint8 # 量化数据类型
)
# 保存量化模型
torch.save(quantized_model, "quantized_model.pth")
# 比较模型大小
import os
original_size = os.path.getsize("fine_tuned_model.pth") / (1024 * 1024)
quantized_size = os.path.getsize("quantized_model.pth") / (1024 * 1024)
print(f"Original model size: {original_size:.2f} MB")
print(f"Quantized model size: {quantized_size:.2f} MB")
print(f"Size reduction: {(1 - quantized_size/original_size) * 100:.2f}%")
使用Hugging Face Optimum进行量化:
from optimum.onnxruntime import ORTQuantizer
from optimum.onnxruntime.configuration import AutoQuantizationConfig
from transformers import AutoModelForSequenceClassification
# 加载模型
model = AutoModelForSequenceClassification.from_pretrained("fine-tuned-model")
# 创建量化器
quantizer = ORTQuantizer.from_pretrained(model)
# 定义量化配置
qconfig = AutoQuantizationConfig.avx512_vnni(
is_static=False,
per_channel=False
)
# 应用量化
quantizer.quantize(
save_dir="./quantized_model",
quantization_config=qconfig
)
2.2 剪枝技术
剪枝是通过移除模型中不重要的权重或神经元来减小模型大小和计算复杂度的技术。
剪枝类型:
-
结构化剪枝:
- 移除整个神经元、通道或层
- 直接减少计算量
- 易于硬件加速
- 可能导致较大精度损失
-
非结构化剪枝:
- 移除单个权重
- 创建稀疏矩阵
- 精度损失较小
- 需要特殊硬件/库支持才能加速
-
基于幅度的剪枝:
- 移除幅度小的权重
- 实现简单
- 广泛使用
-
基于重要性的剪枝:
- 基于权重对损失的影响
- 精度保持更好
- 计算成本更高
使用PyTorch进行剪枝:
import torch
import torch.nn.utils.prune as prune
# 加载模型
model = torch.load("fine_tuned_model.pth")
# 对线性层应用L1范数剪枝(移除30%最小的权重)
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name='weight', amount=0.3)
# 使剪枝永久化
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
prune.remove(module, 'weight')
# 保存剪枝后的模型
torch.save(model, "pruned_model.pth")
使用Hugging Face Optimum进行剪枝:
from optimum.pruning import prune
from transformers import AutoModelForSequenceClassification
# 加载模型
model = AutoModelForSequenceClassification.from_pretrained("fine-tuned-model")
# 定义剪枝配置
pruning_config = {
"method": "magnitude", # 基于幅度的剪枝
"sparsity_type": "unstructured", # 非结构化剪枝
"amount": 0.3, # 剪枝30%的权重
"bias": False # 不剪枝偏置
}
# 应用剪枝
pruned_model = prune(model, **pruning_config)
# 保存剪枝后的模型
pruned_model.save_pretrained("./pruned_model")
2.3 知识蒸馏
知识蒸馏是将大型"教师"模型的知识转移到小型"学生"模型的过程,使学生模型能够接近教师模型的性能。
蒸馏类型:
-
响应蒸馏(Response-Based):
- 学生模型学习教师模型的最终输出
- 使用软标签(softened probabilities)
- 最简单的蒸馏形式
-
特征蒸馏(Feature-Based):
- 学生模型学习教师模型的中间表示
- 捕获更丰富的知识
- 需要设计特征匹配方法
-
关系蒸馏(Relation-Based):
- 学生模型学习样本之间的关系
- 保留样本间的结构信息
- 如样本相似度矩阵
使用Hugging Face实现知识蒸馏:
import torch
import torch.nn.functional as F
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments
# 加载教师模型(大模型)
teacher_model = AutoModelForSequenceClassification.from_pretrained("bert-large-uncased", num_labels=2)
teacher_model.load_state_dict(torch.load("teacher_model.pth"))
teacher_model.eval() # 设置为评估模式
# 加载学生模型(小模型)
student_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2)
# 定义蒸馏损失函数
def distillation_loss(student_logits, teacher_logits, labels, alpha=0.5, temperature=2.0):
# 硬标签损失(学生预测vs真实标签)
hard_loss = F.cross_entropy(student_logits, labels)
# 软标签损失(学生预测vs教师预测)
soft_loss = F.kl_div(
F.log_softmax(student_logits / temperature, dim=-1),
F.softmax(teacher_logits / temperature, dim=-1),
reduction='batchmean'
) * (temperature ** 2)
# 组合损失
return alpha * hard_loss + (1 - alpha) * soft_loss
# 自定义训练器
class DistillationTrainer(Trainer):
def __init__(self, teacher_model=None, alpha=0.5, temperature=2.0, **kwargs):
super().__init__(**kwargs)
self.teacher_model = teacher_model
self.alpha = alpha
self.temperature = temperature
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.pop("labels")
# 学生模型前向传播
student_outputs = model(**inputs)
student_logits = student_outputs.logits
# 教师模型前向传播(无梯度)
with torch.no_grad():
teacher_outputs = self.teacher_model(**inputs)
teacher_logits = teacher_outputs.logits
# 计算蒸馏损失
loss = distillation_loss(
student_logits,
teacher_logits,
labels,
self.alpha,
self.temperature
)
return (loss, student_outputs) if return_outputs else loss
# 训练参数
training_args = TrainingArguments(
output_dir="./distilled_model",
learning_rate=5e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
# 初始化蒸馏训练器
trainer = DistillationTrainer(
teacher_model=teacher_model,
alpha=0.5,
temperature=2.0,
model=student_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
# 训练学生模型
trainer.train()
# 保存学生模型
trainer.save_model("./distilled_model")
2.4 模型合并与混合专家
模型合并(Model Merging)和混合专家(Mixture of Experts, MoE)是近年来流行的模型优化技术。
模型合并:
- 将多个独立训练的模型合并为一个模型
- 如权重平均、模型融合等
- 可以提高性能或创建通用模型
import torch
from transformers import AutoModelForCausalLM
# 加载多个微调模型
model1 = AutoModelForCausalLM.from_pretrained("fine-tuned-model-1")
model2 = AutoModelForCausalLM.from_pretrained("fine-tuned-model-2")
model3 = AutoModelForCausalLM.from_pretrained("fine-tuned-model-3")
# 简单权重平均
merged_state_dict = {}
for key in model1.state_dict().keys():
merged_state_dict[key] = (
model1.state_dict()[key] +
model2.state_dict()[key] +
model3.state_dict()[key]
) / 3.0
# 创建合并模型
merged_model = AutoModelForCausalLM.from_pretrained("base-model")
merged_model.load_state_dict(merged_state_dict)
# 保存合并模型
merged_model.save_pretrained("./merged_model")
混合专家(MoE):
- 多个"专家"网络处理不同类型的输入
- 门控网络决定使用哪个专家
- 只激活部分参数,提高计算效率
import torch
import torch.nn as nn
import torch.nn.functional as F
class SimpleSparseMoE(nn.Module):
def __init__(self, input_size, output_size, num_experts=4, k=2):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.num_experts = num_experts
self.k = k # 每次激活的专家数量
# 门控网络
self.gate = nn.Linear(input_size, num_experts)
# 专家网络
self.experts = nn.ModuleList([
nn.Linear(input_size, output_size)
for _ in range(num_experts)
])
def forward(self, x):
# 计算门控值
gate_logits = self.gate(x) # [batch_size, num_experts]
# 选择top-k专家
topk_values, topk_indices = torch.topk(gate_logits, self.k, dim=1)
topk_values = F.softmax(topk_values, dim=1) # 归一化权重
# 初始化输出
final_output = torch.zeros(x.size(0), self.output_size, device=x.device)
# 对每个样本应用选定的专家
for i in range(x.size(0)): # 遍历批次中的每个样本
for j in range(self.k): # 遍历top-k专家
expert_idx = topk_indices[i, j].item()
expert_weight = topk_values[i, j].item()
expert_output = self.experts[expert_idx](x[i:i+1])
final_output[i:i+1] += expert_weight * expert_output
return final_output
2.5 推理优化框架
多种框架和库可以帮助优化大模型推理:
ONNX Runtime:
- 跨平台高性能推理引擎
- 支持多种硬件加速器
- 与Hugging Face集成良好
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer
# 加载ONNX模型
model = ORTModelForSequenceClassification.from_pretrained("./onnx_model")
tokenizer = AutoTokenizer.from_pretrained("./onnx_model")
# 推理
inputs = tokenizer("Hello, world!", return_tensors="pt")
outputs = model(**inputs)
TensorRT:
- NVIDIA的深度学习推理优化库
- 针对NVIDIA GPU高度优化
- 支持量化、层融合等优化
from transformers import AutoTokenizer
import tensorrt as trt
import numpy as np
import pycuda.driver as cuda
import pycuda.autoinit
# 加载TensorRT引擎
with open("model.engine", "rb") as f:
engine_data = f.read()
runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING))
engine = runtime.deserialize_cuda_engine(engine_data)
context = engine.create_execution_context()
# 准备输入
tokenizer = AutoTokenizer.from_pretrained("model_name")
inputs = tokenizer("Hello, world!", return_tensors="np")
# 分配GPU内存
d_input = cuda.mem_alloc(inputs["input_ids"].nbytes)
d_output = cuda.mem_alloc(output_size * np.float32().nbytes)
# 拷贝输入到GPU
cuda.memcpy_htod(d_input, inputs["input_ids"].astype(np.int32))
# 执行推理
context.execute_v2([int(d_input), int(d_output)])
# 拷贝输出到CPU
output = np.empty(output_shape, dtype=np.float32)
cuda.memcpy_dtoh(output, d_output)
FasterTransformer:
- NVIDIA开发的Transformer模型优化库
- 支持多种优化技术
- 适用于大规模部署
vLLM:
- 专为LLM设计的高性能推理库
- 实现了PagedAttention等优化技术
- 显著提高吞吐量
from vllm import LLM, SamplingParams
# 初始化模型
llm = LLM(model="meta-llama/Llama-2-7b-chat-hf")
# 设置生成参数
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.95,
max_tokens=100
)
# 批量推理
prompts = [
"Write a poem about AI.",
"Explain quantum computing in simple terms.",
"What are the benefits of exercise?"
]
outputs = llm.generate(prompts, sampling_params)
# 打印结果
for output in outputs:
print(f"Prompt: {output.prompt}")
print(f"Generated text: {output.outputs[0].text}")
print("-" * 50)
3. 大模型部署方案
3.1 部署架构
大模型部署架构通常包括以下组件:
前端服务:
- 处理用户请求
- 输入验证和预处理
- 结果后处理和格式化
- 用户界面(如Web UI、API文档等)
推理服务:
- 模型加载和管理
- 请求队列和调度
- 批处理优化
- 负载均衡
监控和日志:
- 性能监控
- 错误跟踪
- 使用统计
- 审计日志
常见架构模式:
-
单机部署:
- 适用于小规模应用
- 所有组件在同一服务器
- 简单但扩展性有限
-
微服务架构:
- 前端和推理服务分离
- 使用API进行通信
- 可独立扩展各组件
-
无服务器架构:
- 使用云函数(如AWS Lambda)
- 按需计算资源
- 适用于间歇性负载
-
混合架构:
- 结合多种部署模式
- 如云端推理+边缘缓存
- 平衡性能和成本
3.2 服务化部署
服务化部署将模型作为API服务提供,是最常见的大模型部署方式。
使用FastAPI创建模型服务:
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# 定义请求和响应模型
class GenerationRequest(BaseModel):
prompt: str
max_length: int = 100
temperature: float = 0.7
top_p: float = 0.95
num_return_sequences: int = 1
class GenerationResponse(BaseModel):
generated_text: str
prompt: str
# 初始化FastAPI应用
app = FastAPI(title="LLM Generation API")
# 加载模型和分词器(全局变量)
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
@app.post("/generate", response_model=GenerationResponse)
async def generate_text(request: GenerationRequest):
try:
# 准备输入
inputs = tokenizer(request.prompt, return_tensors="pt").to(device)
# 生成文本
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_length=request.max_length,
temperature=request.temperature,
top_p=request.top_p,
num_return_sequences=request.num_return_sequences,
do_sample=True
)
# 解码输出
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return GenerationResponse(
generated_text=generated_text,
prompt=request.prompt
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# 启动服务
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
使用Docker容器化部署:
# 基础镜像
FROM python:3.9-slim
# 设置工作目录
WORKDIR /app
# 安装依赖
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# 复制应用代码
COPY . .
# 下载并缓存模型
RUN python -c "from transformers import AutoModelForCausalLM, AutoTokenizer; \
model_name='gpt2'; \
tokenizer = AutoTokenizer.from_pretrained(model_name); \
model = AutoModelForCausalLM.from_pretrained(model_name); \
tokenizer.save_pretrained('./model'); \
model.save_pretrained('./model')"
# 暴露端口
EXPOSE 8000
# 启动命令
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
使用Hugging Face Inference Endpoints:
Hugging Face提供了托管推理服务,可以轻松部署模型:
- 在Hugging Face Hub上创建或上传模型
- 在模型页面选择"Deploy">“Inference Endpoints”
- 选择实例类型和自动扩展设置
- 部署完成后,通过API访问模型
import requests
API_URL = "https://api-inference.huggingface.co/models/your-username/your-model"
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": "Hello, I am a language model",
"parameters": {
"max_length": 50,
"temperature": 0.7
}
})
print(output)
3.3 批处理推理
批处理推理是指同时处理多个请求,可以显著提高吞吐量。
批处理优势:
- 提高GPU利用率
- 减少平均延迟
- 提高吞吐量
实现批处理推理服务:
from fastapi import FastAPI, BackgroundTasks
from pydantic import BaseModel
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import asyncio
from typing import List, Dict
import time
import uuid
# 定义请求和响应模型
class GenerationRequest(BaseModel):
prompt: str
max_length: int = 100
class GenerationResponse(BaseModel):
request_id: str
generated_text: str = None
status: str = "pending"
# 初始化FastAPI应用
app = FastAPI(title="Batched LLM Inference API")
# 加载模型和分词器
model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 请求队列和结果存储
request_queue = asyncio.Queue()
results: Dict[str, GenerationResponse] = {}
# 批处理大小和间隔
BATCH_SIZE = 8
BATCH_INTERVAL = 0.1 # 秒
# 批处理推理函数
async def batch_inference_worker():
while True:
# 收集批次请求
batch_requests = []
batch_ids = []
# 尝试填充批次
try:
for _ in range(BATCH_SIZE):
if request_queue.empty():
if batch_requests: # 如果已有请求,处理当前批次
break
await asyncio.sleep(BATCH_INTERVAL) # 等待新请求
continue
req_id, prompt, max_length = await request_queue.get()
batch_requests.append((prompt, max_length))
batch_ids.append(req_id)
except Exception as e:
print(f"Error collecting batch: {e}")
await asyncio.sleep(BATCH_INTERVAL)
continue
# 如果批次为空,继续等待
if not batch_requests:
await asyncio.sleep(BATCH_INTERVAL)
continue
# 处理批次
try:
# 准备输入
prompts = [req[0] for req in batch_requests]
max_lengths = [req[1] for req in batch_requests]
# 分词
inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(device)
# 生成文本
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_length=max(max_lengths),
do_sample=True
)
# 解码输出并更新结果
for i, (req_id, output) in enumerate(zip(batch_ids, outputs)):
generated_text = tokenizer.decode(output, skip_special_tokens=True)
results[req_id].generated_text = generated_text
results[req_id].status = "completed"
except Exception as e:
# 更新失败状态
for req_id in batch_ids:
results[req_id].status = "failed"
print(f"Batch inference error: {e}")
# 标记任务完成
for _ in range(len(batch_requests)):
request_queue.task_done()
# API端点
@app.post("/generate", response_model=GenerationResponse)
async def generate_text(request: GenerationRequest):
# 创建请求ID
request_id = str(uuid.uuid4())
# 创建响应对象
response = GenerationResponse(request_id=request_id)
results[request_id] = response
# 将请求添加到队列
await request_queue.put((request_id, request.prompt, request.max_length))
return response
6. 从JAVA开发者视角理解大模型部署
6.1 概念对比
JAVA应用部署与大模型部署对比:
JAVA概念 | 大模型概念 | 说明 |
---|---|---|
JAR/WAR包 | 模型权重文件 | 应用的核心资产 |
应用服务器 | 推理服务器 | 运行环境 |
负载均衡器 | 模型分片/并行 | 分散负载的方式 |
缓存服务 | KV缓存/结果缓存 | 提高性能的机制 |
连接池 | 批处理推理 | 资源复用机制 |
JVM调优 | GPU内存优化 | 运行时优化 |
热部署 | 模型热加载 | 不中断服务更新 |
日志框架 | 推理监控 | 可观测性工具 |
6.2 技能迁移
可迁移的JAVA技能:
-
系统设计原则:
- 高内聚低耦合
- 单一职责
- 关注点分离
- 可扩展性设计
-
性能优化经验:
- 缓存策略
- 资源池化
- 异步处理
- 负载均衡
-
可靠性工程:
- 错误处理
- 故障恢复
- 熔断机制
- 健康检查
-
监控与运维:
- 日志管理
- 性能指标
- 告警系统
- 自动化部署
6.3 开发流程对比
JAVA应用开发流程:
- 编写代码
- 单元测试
- 构建JAR/WAR包
- 部署到应用服务器
- 配置负载均衡
- 监控与维护
大模型应用开发流程:
- 微调/优化模型
- 模型评估
- 模型导出/转换
- 部署到推理服务器
- 配置扩展策略
- 监控与维护
6.4 实践建议
从JAVA到大模型部署的过渡:
-
利用已有知识:
- 应用现有的系统设计经验
- 复用可靠性工程实践
- 迁移性能优化思路
-
重点学习领域:
- GPU计算和内存管理
- 模型量化和优化技术
- 分布式推理架构
- Python生态系统工具
-
开发习惯调整:
- 从编译型思维转向解释型思维
- 关注内存和计算效率
- 适应概率性输出(vs确定性输出)
- 重视数据和模型质量(vs代码质量)
-
工具链转换:
- Maven/Gradle → pip/conda
- JUnit → pytest
- Jenkins → GitHub Actions
- Tomcat/JBoss → FastAPI/Flask
7. 实践练习
练习1:模型量化
- 选择一个微调后的BERT模型
- 实现动态量化(PyTorch或ONNX)
- 比较量化前后的模型大小和推理速度
- 评估量化对模型准确性的影响
- 尝试不同的量化配置并比较结果
练习2:推理服务部署
- 使用FastAPI创建一个模型推理服务
- 实现请求验证和错误处理
- 添加结果缓存机制
- 实现简单的负载监控
- 使用Docker容器化服务
练习3:批处理推理
- 实现一个批处理推理服务
- 设计请求队列和批处理逻辑
- 测试不同批量大小对吞吐量的影响
- 实现动态批处理大小调整
- 添加请求超时处理
8. 总结与反思
- 大模型推理优化是平衡性能、资源使用和准确性的过程,常用技术包括量化、剪枝和知识蒸馏
- 大模型部署需要考虑架构设计、服务化、批处理和边缘部署等多种方案,根据应用场景选择合适的方案
- 大模型应用架构设计应遵循可扩展性、可靠性、性能优化、安全性和可观测性等原则
- 监控与维护是大模型应用长期成功的关键,包括性能监控、错误处理、A/B测试和持续改进
- JAVA开发者可以迁移许多系统设计和性能优化经验到大模型部署中,同时需要学习新的技术和调整开发习惯
9. 预习与延伸阅读
预习内容
- RAG(检索增强生成)技术
- 大模型应用开发模式
- 大模型应用安全性考虑
- 多模态模型应用开发
延伸阅读
- NVIDIA,《Optimizing Deep Learning Models for Production》
- Hugging Face,《Optimum: Performance Optimization Tools for Transformers》
- Chip Huyen,《Designing Machine Learning Systems》(第8章:Model Deployment and Prediction Service)
- Valliappa Lakshmanan等,《Machine Learning Design Patterns》
- AWS,《Best Practices for Deploying Large Language Models》
10. 明日预告
明天我们将学习RAG(检索增强生成)技术,这是提升大模型应用质量的重要方法。我们将探讨如何构建知识库、实现高效检索、设计提示工程以及评估RAG系统性能。我们还将讨论RAG在不同应用场景中的实现方法,以及如何将RAG与其他技术结合以构建更强大的大模型应用。