
Flink
文章平均质量分 93
涤生大数据
在职阿里,美团,京东,字节大数据技术专家,擅长大数据开发,集群架构/运维,爱好python数据分析/爬虫,
加 v: dsflink 可免费转行评估,职业规划,校招规划,大数据进阶指导,简历把脉
欢迎一起交流
展开
-
Kafka Streams 和 Apache Flink 的无状态流处理与有状态流处理
Kafka Streams 和 Apache Flink 与数据库和数据湖相比的无状态和有状态流处理的概念和优势。在数据驱动的应用中,流处理的兴起改变了我们处理和操作数据的方式。虽然传统数据库、数据湖和数据仓库对于许多基于批处理的用例来说非常有效,但在要求低延迟、可扩展性和实时决策的场景中,它们显得力不从心。本文以Kafka Streams和Apache Flink为例,探讨无状态和有状态流处理的关键概念。这些原则适用于任何流处理引擎,无论是开源引擎还是云服务引擎。原创 2025-05-24 21:04:49 · 375 阅读 · 0 评论 -
带你玩转 Flink TumblingWindow:从理论到代码的深度探索
在深入探讨 TumblingWindow 之前,我们先来了解一下流处理或流计算中“窗口”的基本概念。在数据流中,源会持续不断地生成数据,因此计算最终值是不可行的。原创 2025-05-09 00:11:44 · 1213 阅读 · 0 评论