算法分析--对大量随机读取数据库的性能优化

针对100W规模高活跃数据库表,文章提出了从直接SQL随机取数据到利用Redis缓存的多个解决方案。方案三是在Redis中存储200条数据,按需随机选取;方案四则涉及数据分片和预热到Redis,提高效率。文章强调逻辑简洁和避免引入新风险,同时讨论了各方案的优缺点。

春风如贵客,一到便繁华。各位看官先赞再看,养成好习惯(●´∀`●)

前言:

假设,有一张100W规模,并且活跃度很高的数据库表,需要从数据库中随机读取20条数据,并且对性能要求很高的要求。

本文不涉及任何传统的算法结构,仅从解决实际问题出发,代码仅作实例!!!

方案一:

使用数据库随机取20条,代码如下:

SELECT
	*
FROM
	t_user u
WHERE
	1 = 1
ORDER BY RAND()
LIMIT 20

优点:方便,逻辑简单,代码简洁,不引入新的中间件和风险,方便快速开发。

缺点:数据量大之后,存在sql优化的必要。大量请求的话,会造成数据库链接过多

方案二:

随机读取 数据库主键

使用JAVA代码,随机生成30个id,按照大小排列(随机生成30个,取前20个是比较保险的做法)

SELECT
	*
FROM
	t_user u
WHERE
	1 = 1
AND u.user_id IN
(
-- 随机的id
)
LIMIT 20

优点:逻辑比较简单,代码简洁,不引入新的中间件和风险,方便快速开发。

缺点:需要提前设置好该表的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值