图解LeetCode——886. 可能的二分法(难度:中等)

一、题目

给定一组 n 人(编号为 1, 2, ..., n), 我们想把每个人分进任意大小的两组。每个人都可能不喜欢其他人,那么他们不应该属于同一组。

给定整数 n 和数组 dislikes ,其中 dislikes[i] = [ai, bi] ,表示不允许将编号为 ai 和  bi的人归入同一组。当可以用这种方法将所有人分进两组时,返回 true;否则返回 false

二、示例

2.1> 示例 1:

【输入】n = 4, dislikes = [[1,2],[1,3],[2,4]]
【输出】true
【解释】group1 [1,4], group2 [2,3]

2.2> 示例 2:

【输入】n = 3, dislikes = [[1,2],[1,3],[2,3]]
【输出】false

2.3> 示例 3:

【输入】n = 5, dislikes = [[1,2],[2,3],[3,4],[4,5],[1,5]]
【输出】false

提示:

  • 1 <= n <= 2000
  • 0 <= dislikes.length <= 104
  • dislikes[i].length == 2
  • 1 <= dislikes[i][j] <= n
  • ai < bi
  • dislikes 中每一组都 不同

三、解题思路

首先,创建一个二维数组,用来记录1到n个数之间的互斥关系。我们以n = 10,dislikes = [[1,2],[3,4],[5,6],[6,7],[8,9],[7,8]]为例,那么我们就可以得出如下矩阵图,如下图所示:

然后我们从第1行(row1)开始遍历,如果发现有“红色”,即表示发生了排斥,那么我们在对其进行深度遍历,如下图所示,我们遍历第1行的时候,发现2与其排斥,那么我们深度遍历第2行,由于第二行中没有与2排斥的数字了,所以我们得出结论,即:1在a组2在b组

我们继续遍历其他行,由于2已经被分配给了b组,所以第2行(row2)不遍历。

我们遍历第3行,由于发现与4发生了排斥,那么深度遍历到第4行,发现没有其他数组与4发生排斥,所以我们得出结论,即:3在a组4在b组

由于4已经被分配给了b组,所以第4行(row4)不遍历。我们遍历到第5行,发生如下遍历情况:

row5发现数字6与它发生排斥,深度遍历到row6
row6发现数字7与它发生排斥,深度遍历到row7
row7发现数字8与它发生排斥,深度遍历到row8
row8发现数字9与它发生排斥,深度遍历到row9
row9发现没有数字与其排斥,所得得出分组结论:即:5在a组6在b组7在a组8在b组9在a组

最终结论就是,a组里有[1,3,5,7,9] ,b组里有[2,4,6,8] ,具体详情请见下图:

四、代码实现

4.1> 以二维数组方式实现矩阵

class Solution {
    public boolean possibleBipartition(int n, int[][] dislikes) {
        int[][] matrix = new int[n + 1][n + 1];
        for (int[] item : dislikes)
            matrix[item[0]][item[1]] = matrix[item[1]][item[0]] = 1;
        int[] record = new int[n + 1]; // 记录分组情况
        for (int i = 1; i <= n ; i ++)
            if (record[i] == 0 && ! dfs(matrix, record, i, 1, n)) return false;
        return true;
    }

    private boolean dfs(int[][] matrix, int[] record, int index,int group, int n) {
        record[index] = group;
        for (int i = 1; i <= n ; i++) {
            if(i == index || matrix[index][i] == 0) continue;
            if (record[i] == group) return false;
            if (record[i] == 0 && !dfs(matrix, record, i, group * -1, n)) return false;
        }
        return true;
    }
}

4.2> 以List方式进行改造

class Solution {
    public boolean possibleBipartition(int n, int[][] dislikes) {
        List<Integer>[] matrix = new ArrayList[n + 1];
        for (int i = 1; i < matrix.length; i++) matrix[i] = new ArrayList(n + 1);
        for (int[] item : dislikes) {
            matrix[item[0]].add(item[1]);
            matrix[item[1]].add(item[0]);
        }
        int[] record = new int[n + 1]; // 记录分组情况
        for (int i = 1; i < matrix.length ; i ++)
            if (record[i] == 0 && !dfs(matrix, record, i, 1)) return false;
        return true;
    }

    private boolean dfs(List<Integer>[] matrix, int[] record, int index, int group) {
        record[index] = group;
        for (int i = 0; i < matrix[index].size() ; i++) {
            int num = matrix[index].get(i);
            if (record[num] == group) return false;
            if (record[num] == 0 && !dfs(matrix, record, num, group * -1)) return false;
        }
        return true;
    }
}

今天的文章内容就这些了:

写作不易,笔者几个小时甚至数天完成的一篇文章,只愿换来您几秒钟的 点赞 & 分享 。

更多技术干货,欢迎大家关注公众号“爪哇缪斯” ~ \(^o^)/ ~ 「干货分享,每天更新」

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值