使用Java完成《算法导论》习题2.3-5

public class BinarySreach2_3_5
{
	/**
	 *  在已排序的序列中进行二分查找
	 *  @date 2015-6-13
	 *  @author lemma
	 */
	
	// doSreach方法
	public int doSreach(int Data[], int target)
	{
		// 标记序列的头、尾和中点
		int start = 0;
		int end = Data.length - 1;
		int middle = (start + end) / 2;
		int indexTarget = -1;
		// 二分查找
		for (; start <= end;)
		{
			// 如果middle等于target则终止查找
			if (Data[middle] == target)
			{
				indexTarget = middle;
				break;
			}
			// 如果middle比target大,则查找左半部分
			else if (Data[middle] > target)
			{
				end = middle - 1;
				middle = (start + end) / 2;
			}
			// 如果middle比target小,则查找右半部份
			else if (Data[middle] < target)
			{
				start = middle + 1;
				middle = (start + end) / 2;
			}
		}
		//返回目标的数组下标
		return indexTarget;
	}

	public static void main(String args[])
	{
		BinarySreach2_3_5 bs = new BinarySreach2_3_5();
		int Data[] = { 1, 5, 9, 15, 45, 87, 97, 124 };
		int number = 87;
		if (bs.doSreach(Data, number) != -1)
			System.out.println(Data[bs.doSreach(Data, number)]);
		else
			System.out.println("The Number is not existed");
	}
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这是两个问题。让我分别回答。 --- 对于习题24.2-4,我们需要证明:对于有向图$G=(V,E)$,从源点$s$到任何其他点$v\in V$的最短路径上最多可以包含$|V|-1$条边。 我们可以使用反证法来证明这个结论。假设存在一条从$s$到$v$的最短路径包含了$|V|$条边。由于这是一条简单路径,所以它经过了$|V|$个顶点中的所有顶点。因此,这个路径形成了一个简单环。我们可以从这个简单环中删除任意一条边,得到一条从$s$到$v$的路径,路径长度比原来的最短路径长度更小,这与原来的最短路径的假设相矛盾。因此,假设不成立,结论得证。 --- 对于习题24.3-6,我们需要证明:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。 我们可以使用反证法来证明这个结论。假设存在一个从$s$到$v$的最短路径上存在一个负权重环。由于负权重环的存在,我们可以通过不断绕这个环走来无限制地减小路径长度,因此不存在从$s$到$v$的最短路径。但是,Bellman-Ford算法会在第$|V|$次松弛操作之前终止,并且在第$i$次松弛操作之后,算法会计算出从$s$到所有距离$s$不超过$i$的顶点的最短路径。因此,我们可以得出结论:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值