Codeforces Round #656 (Div. 3) 补题
E
题目
混合图定向是否能成DAG
思路
有一个神秘定理:如果原来的有向边不成环,那么就可以定向成DAG,反之就不行
做法是对有向边拓扑排序,记录拓扑序,然后无向边定向的时候从拓扑序低的指向拓扑序高的点
这样拓扑序低的点不会应为入度问题被改变
但是如果无向图定向的时候拓扑序高的指向拓扑序低的,那就会影响拓扑形成的线性关系了
就是我们要尽量的维持拓扑的线性关系
DAG和拓扑有点奇妙的联系啊
代码
#include <iostream>
#include <cstdio>
#include <set>
#include <list>
#include <vector>
#include <stack>
#include <queue>
#include <map>
#include <string>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <fstream>
#include <iomanip>
//#include <unordered_map>
using namespace std;
#define dbg(x) cerr << #x " = " << x << endl;
typedef pair<int, int> P;
typedef long long ll;
#define FIN freopen("in.txt", "r", stdin);
int n, m;
const int MAXN = 2e5+5;
struct node
{
int st, u ,v;
};
vector<int> v[MAXN];
node a[MAXN];
int order[MAXN];
int in[MAXN];
void init()
{
for(int i = 0; i <= n; i++)
{
order[i] = 0;
in[i] = 0;
v[i].clear();
}
}
bool toposort()
{
queue<int> q;
for(int i = 1; i <= n; i++)
{
if(in[i] == 0)
{
q.push(i);
}
}
int cur = 0;
while(!q.empty())
{
int now = q.front();
q.pop();
order[now] = ++cur;
for(int i = 0; i < v[now].size(); i++)
{
int nxt = v[now][i];
in[nxt]--;
if(in[nxt] == 0)
{
q.push(nxt);
}
}
}
return cur == n;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >>t;
while(t--)
{
cin >> n >> m;
init();
for(int i = 0; i < m; i++)
{
int p, st, ed;
cin >> p >>st >>ed;
a[i].st = p;
a[i].u = st;
a[i].v = ed;
if(p == 1)
{
v[st].push_back(ed);
in[ed]++;
}
}
int flg = toposort();
if(!flg)
{
cout << "NO" <<endl;
}
else
{
cout << "YES" <<endl;
for(int i = 0; i < m; i++)
{
if(a[i].st == 0 && order[a[i].u] > order[a[i].v])
{
swap(a[i].u, a[i].v);
}
cout << a[i].u << ' ' <<a[i].v <<endl;
}
}
}
return 0;
}
F
题目
一次可以移除一点上的k个叶子,问最多操作多少次
思路
有一个题解做法很巧妙,我们找到所有的叶子入队,取出队头叶子,删除他,然后更新他的父节点,让他的父节点的度数-1,并记录这个父节点删除了1个节点,就这样不停的入队出队,我们注意,当一个节点恰好删除了k个节点,那么记录操作次数一次,还有注意,当一个节点删除了k个叶子之后,恰好度数为1,那么这个就是新的叶子节点,应当入队。
这样的思路可以用toposort的写法模拟。
我们设置del[i]是i节点删除的叶子个数,in[i]是i节点的度数,那么
if(del[nxt] % m == 0 && in[nxt] == 1)
就是新的叶子节点
代码
#include <iostream>
#include <cstdio>
#include <set>
#include <list>
#include <vector>
#include <stack>
#include <queue>
#include <map>
#include <string>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <fstream>
#include <iomanip>
//#include <unordered_map>
using namespace std;
#define dbg(x) cerr << #x " = " << x << endl;
typedef pair<int, int> P;
typedef long long ll;
#define FIN freopen("in.txt", "r", stdin);
const int MAXN = 2e5+5;
vector<int> v[MAXN];
int in[MAXN], del[MAXN], vis[MAXN];
int n, m;
void init()
{
for(int i = 0; i <= n; i++)
{
in[i] = 0;
v[i].clear();
vis[i] = del[i] = 0;
}
}
int toposort()
{
int ans = 0;
queue<int> q;
for(int i = 1; i <= n; i++)
{
if(in[i] == 1)
{
q.push(i);
}
}
while(!q.empty())
{
int now = q.front();
q.pop();
vis[now] = 1;
for(int i = 0; i < v[now].size(); i++)
{
int nxt = v[now][i];
if(vis[nxt]) continue;
in[nxt]--, del[nxt]++;
if(del[nxt] % m == 0)
{
ans ++;
if(in[nxt] == 1) q.push(nxt);
}
}
}
return ans;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while(t--)
{
init();
cin >> n >> m;
for(int i = 1; i < n; i++)
{
int st, ed;
cin >>st >>ed;
v[st].push_back(ed);
v[ed].push_back(st);
in[st]++, in[ed]++;
}
int ans = toposort();
cout << ans << endl;
}
return 0;
}