Codeforces Round #656 (Div. 3) 补题

Codeforces Round #656 (Div. 3) 补题

E

题目


混合图定向是否能成DAG

思路

有一个神秘定理:如果原来的有向边不成环,那么就可以定向成DAG,反之就不行
做法是对有向边拓扑排序,记录拓扑序,然后无向边定向的时候从拓扑序低的指向拓扑序高的点
这样拓扑序低的点不会应为入度问题被改变
但是如果无向图定向的时候拓扑序高的指向拓扑序低的,那就会影响拓扑形成的线性关系了
就是我们要尽量的维持拓扑的线性关系
DAG和拓扑有点奇妙的联系啊

代码

#include <iostream>
#include <cstdio>
#include <set>
#include <list>
#include <vector>
#include <stack>
#include <queue>
#include <map>
#include <string>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <fstream>
#include <iomanip>
//#include <unordered_map>
using namespace std;
#define dbg(x) cerr << #x " = " << x << endl;
typedef pair<int, int> P;
typedef long long ll;
#define FIN freopen("in.txt", "r", stdin);
int n, m;
const int MAXN = 2e5+5;
struct node
{
    int st, u ,v;
};
vector<int> v[MAXN];
node a[MAXN];
int order[MAXN];
int in[MAXN];
void init()
{
    for(int i = 0; i <= n; i++)
    {
        order[i] = 0;
        in[i] = 0;
        v[i].clear();
    }
}

bool toposort()
{
    queue<int> q;
    for(int i = 1; i <= n; i++)
    {
        if(in[i] == 0)
        {
            q.push(i);
        }
    }
    int cur = 0;
    while(!q.empty())
    {
        int now = q.front();
        q.pop();
        order[now] = ++cur;
        for(int i = 0; i < v[now].size(); i++)
        {
            int nxt = v[now][i];
            in[nxt]--;
            if(in[nxt] == 0)
            {
                q.push(nxt);
            }
        }
    }
    return cur == n;
}
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    int t;
    cin >>t;
    while(t--)
    {
        cin >> n >> m;
        init();
        for(int i = 0; i < m; i++)
        {
            int p, st, ed;
            cin >> p >>st >>ed;
            a[i].st = p;
            a[i].u = st;
            a[i].v = ed;
            if(p == 1)
            {
                v[st].push_back(ed);
                in[ed]++;
            }
        }
        int flg = toposort();
        if(!flg)
        {
            cout << "NO" <<endl;
        }
        else
        {
            cout << "YES" <<endl;
            for(int i = 0; i < m; i++)
            {
                if(a[i].st == 0 && order[a[i].u] > order[a[i].v])
                {
                    swap(a[i].u, a[i].v);
                }
                cout << a[i].u << ' ' <<a[i].v <<endl;
            }
        }
    }
    return 0;
}

F

题目

在这里插入图片描述
一次可以移除一点上的k个叶子,问最多操作多少次

思路

有一个题解做法很巧妙,我们找到所有的叶子入队,取出队头叶子,删除他,然后更新他的父节点,让他的父节点的度数-1,并记录这个父节点删除了1个节点,就这样不停的入队出队,我们注意,当一个节点恰好删除了k个节点,那么记录操作次数一次,还有注意,当一个节点删除了k个叶子之后,恰好度数为1,那么这个就是新的叶子节点,应当入队。
这样的思路可以用toposort的写法模拟。
我们设置del[i]是i节点删除的叶子个数,in[i]是i节点的度数,那么

if(del[nxt] % m == 0 && in[nxt] == 1)

就是新的叶子节点

代码

#include <iostream>
#include <cstdio>
#include <set>
#include <list>
#include <vector>
#include <stack>
#include <queue>
#include <map>
#include <string>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <fstream>
#include <iomanip>
//#include <unordered_map>
using namespace std;
#define dbg(x) cerr << #x " = " << x << endl;
typedef pair<int, int> P;
typedef long long ll;
#define FIN freopen("in.txt", "r", stdin);
const int MAXN = 2e5+5;
vector<int> v[MAXN];
int in[MAXN], del[MAXN], vis[MAXN];
int n, m;
void init()
{
    for(int i = 0; i <= n; i++)
    {
        in[i] = 0;
        v[i].clear();
        vis[i] = del[i] = 0;
    }
}

int toposort()
{
    int ans = 0;
    queue<int> q;
    for(int i = 1; i <= n; i++)
    {
        if(in[i] == 1)
        {
            q.push(i);
        }
    }
    while(!q.empty())
    {
        int now = q.front();
        q.pop();
        vis[now] = 1;
        for(int i = 0; i < v[now].size(); i++)
        {
            int nxt = v[now][i];
            if(vis[nxt]) continue;
            in[nxt]--, del[nxt]++;
            if(del[nxt] % m == 0)
            {
                ans ++;
                if(in[nxt] == 1) q.push(nxt);
            }
            
        }
    }
    return ans;
}
int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    int t;
    cin >> t;
    while(t--)
    {
        init();
        cin >> n >> m;
        for(int i = 1; i < n; i++)
        {
            int st, ed;
            cin >>st >>ed;
            v[st].push_back(ed);
            v[ed].push_back(st);
            in[st]++, in[ed]++;
        }
        int ans = toposort();
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值