计蒜客上的一个题目,把别人的代码copy过来,加上了自己的注释。
题目:给定一个不超过5000个数的序列,每个数不超过32位带符号长整型,求序列严格单调递减子序列中的最长序列长度,如果有多个这样的序列,输出序列值不重复的总个数。
package lianxi_1;
import java.math.BigInteger;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class Exercise_15 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] arr = new long[n];
long[] dp = new long[n];// dp[j]表示从0到j最长的递减序列长度
BigInteger[] size = new BigInteger[n];// size[i]表示以arr[i]为末端的递减序列个数(相同序列值的不算)
for (int i = 0; i < n; i++)
arr[i] = sc.nextLong();
long max = 0;
for (int i = 0; i < n; i++) {
dp[i] = 1;
size[i] = new BigInteger("0");
for (int j = 0; j < i; j++) {
if (arr[j] > arr[i]) {
// 这个意思是第一次arr[j]>arr[i]后,判断通过dp[i]+1
// 那么第二次dp[j]至少得为2,才会有2+1>2
// 而dp[j]要为2,必须建立在之前的arr[k]>arr[j]上
// 这样就构成了arr[k]>arr[j]>arr[i],此时dp[i]=3
if (dp[j] + 1 > dp[i])
dp[i] = dp[j] + 1;
}
}
// 更新max
if (dp[i] > max)
max = dp[i];
if (dp[i] > 1) {
Set<Long> set = new HashSet<>();
for (int j = i - 1; j >= 0; j--) {
// 第一个条件表示递减,第二个表示长度必须是dp[i]-1,因为序列的长度是一个个加起来的,第三个表示不能取重复值
if (arr[j] > arr[i] && dp[j] == dp[i] - 1 && !set.contains(arr[j])) {
set.add(arr[j]);
size[i] = size[i].add(size[j]);// size[i]初始为0,找到一个j,就把对应的数目加起来
}
}
}
// 前面的数都小于或等于arr[i]
else {
size[i] = new BigInteger("1");
}
}
BigInteger nums = new BigInteger("0");
Set<Long> set = new HashSet<>();
for (int i = n - 1; i >= 0; i--) {
// 在上面把以某个arr[i]为末端的所有最长递减子序列数目加起来赋给size[i]
// 所以此时不需要再统计相同末端值的各个情况
if (dp[i] == max && !set.contains(arr[i])) {
set.add(arr[i]);
nums = nums.add(size[i]);
}
}
System.out.println(max + " " + nums.toString());
}
}